

Grant Agreement No.: 723576

DryFiciency

Waste Heat Recovery in Industrial Drying Processes

H2020-EE-2016-2017-PPP Valorisation of waste heat in industrial systems (SPIRE PPP)

Guidelines on Lessons Learned and Training materials

D6.9

This is a Deliverable of WP 6.

Deliverable Leader: Mike Muegge (RTDS) Authors: Annemarie Schneeberger, Veronika Wilk (all AIT)

Project co-funded by the European Commission within H2020 Programme

INDEX

EXEC	UTIVE SUMMARY	4
1	Introduction	4
2	Diffusion of industrial heat pumps	6
3	Lessons learned	7
4	Training and knowledge sharing on lessons learned	9
4.1	Online seminars and final conference	9
4.2	DryF training program on IHPs13	3
5	Materials for capacity building1	7
5.1	YouTube Videos1	7
5.2	DryF Training program – Module 1	9
5.3	DryF Online seminars and final conference	6

Statement of originality: This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through **appropriate** citation, quotation or both.

NOTES: For comments / suggestions / contributions to this document, contact: Coordinator of DryFiciency project at <u>Veronika.Wilk@ait.ac.at</u>. For more information on the project DryFiciency, link to <u>www.dryficiency.eu</u>

List of abbreviations

AGA	Agrana
AIT	Austrian Institute of Technology GmbH
HP	Heat pumps
HTHP	High temperature heat pumps
IHP	Industrial heat pumps
MVR	Mechanical Vapor Recompression
SCS	Scanship
WBG	Wienerberger

EXECUTIVE SUMMARY

Deliverable D6.9 *Guidelines of Lessons Learned, and Training Materials* reports on the training and knowledge sharing formats, tools and materials developed to broadly spread the results, lessons learned, and experiences gained from the projects' development and demonstration activities. The target groups to be profoundly informed and trained comprise especially energy managers, energy consultants, plant planners & engineer, but also policy makers on various levels. The formats developed and applied include five DryF online seminars, the DryFiciency training program consisting of three modules, and nine DryFiciency YouTube videos.

1 INTRODUCTION

In industrialised countries 12 to 25% of the industrial energy consumption is attributable to industrial drying. Most of this energy is based on the use of fossil fuels with no or little utilization of waste heat streams.

Industrial heat pumps (IHPs) are an efficient heat recovery technology in an early phase of market diffusion gaining increasingly attention from both policy makers and industrial end-users. Stringent environmental legislation ("European Green Deal"), a more favorable gas and electricity price ratio as well as rising prices for carbon dioxide emission certificates are the driving forces behind this development. In a recent market study by Global Market Insight, the European IHP market valued at over US\$ 180 million in 2020 was estimated to register more than 6% CAGR between 2021 and 2027 to reach a projected value of US\$ 300 million in 2027.¹

In the DryFiciency project, three novel high temperature heat pump (HTHP) systems were developed under the lead of the coordinator AIT and demonstrated first-time in industrial environment with supply temperatures of up to 160°C thereby utilizing waste heat streams from three drying processes in three industrial sectors.

Food industry: A novel closed loop heat pump technology was implemented for **drying** of **starch** from potato, wheat, and corn at a production site of Agrana Stärke GmbH (<u>www.agrana.com</u>) in Pischelsdorf, Austria.

Ceramic sector: An innovative closed loop heat pump was implemented for **green brick drying** by Wienerberger AG (<u>www.wienerberger.com</u>), the largest brick producer worldwide, in a brick production plant in Uttendorf, Austria.

Waste management industry: An improved MVR drying technology for **sludge** respectively **biomass drying** was installed together with an innovative open loop heat pump in a land-based waste management system in Drammen, Norway.

¹ Global Market Insights, Europe Industrial Heat Pump Market, Regional Outlook 2027, April 2021 <u>https://www.gminsights.com/industry-analysis/europe-industrial-heat-pump-market</u>

Two advanced compressor technologies: modified screw compressors by Bitzer Kühlmaschinenbau GmbH (<u>www.bitzer.de</u>) used in the heat pump application at Agrana Stärke GmbH for starch drying and a novel piston compressor technology developed by Viking Heat Engines (<u>www.vikingheatengines.com</u>), which was taken over by Heaten AS (<u>www.heaten.no</u>) in 2020 implemented in the brick drying application at Wienerberger allowing heat supply temperatures up to 160°C.

A **unique synthetic lubricant** for high temperature applications developed by FUCHS (<u>www.fuchs.com</u>) for both compressors being sufficiently viscous and chemically stable with the refrigerant selected, Opteon[™] MZ from Chemours, at elevated temperature levels.

OpteonTM MZ from Chemours (<u>www.chemours.com</u>), R1336mzz(Z), a synthetic refrigerant based on HFO (hydrofluoro-olefin), was developed for high temperature applications with heat supply temperatures of up to 160°C prior to the project. It shows a low GWP (Global Warming Potential) of 2 and a number of favourable characteristics, such as non-flammability and non-toxicity. It is also not subject to the EU legislation to control F-gases (so called F-gas regulation).²

The **design** of the **closed loop refrigeration cycle** was developed by AIT, who was also responsible for an appropriate process control system for the two air drying processes as well as for the monitoring of the performance of the two novel HP systems.

The **main innovation** on the **open loop heat pump system**, commonly referred to as Mechanical Vapour Re-compression (MVR), which uses water (R718) as refrigerant, includes:

Advanced, low-cost, oil-free turbo-compressor technology from ROTREX AS (<u>www.rotrex.com</u>) originating from the automotive sector, which was further developed to reach condensation temperatures of up to 155°C.

Advanced, MVR dryer technology improved in terms of capacity and efficiency of more than 75% while reducing energy consumption by 70%, was developed by Scanship AS (www.scanship.no)

The **design** of the **MVR system** was elaborated and implemented in close cooperation by EPCON (<u>www.epcon.no</u>) and SINTEF (<u>www.sintef.no</u>) considering the boundary conditions of the drying application at Drammen. SINTEF and ECPON were also responsible for an efficient process control and the integration of the MVR system into the drying process and the monitoring of the system performance.

² <u>https://ec.europa.eu/clima/policies/f-gas/legislation_en</u>

2 DIFFUSION OF INDUSTRIAL HEAT PUMPS

Although technologically mature when it comes to supplying heat up to 120°C for some time, IHP technology diffusion is still in an early stage with only few heat pumps (HPs) installed in the industrial sector reaching that elevated temperature level.

Recent research by AIT has shown, that there are only 20 demo respectively pilot installations known using compression HP systems at supply temperature levels of above 100°C, although the first two HTHPs were reportedly already installed in Japan in 2012 providing process heat up to 125°C and 120°C to chemical processes.

Figure 1 depicts the HTHP pilots known. Their heating capacities - displayed by the length of the bars - range from 50 kW supplying 130°C process heat (blue dot) up to a 6000 kW HTHP planned to be installed in an Italian DH-network to supply heat up to 120°C. The highest heat sink temperature - up to 180°C – is planned to be achieved by a 500kW HighLift HP developed by the Norwegian SME Olvondo to be installed at Astra Zeneca in Sweden in 2021.

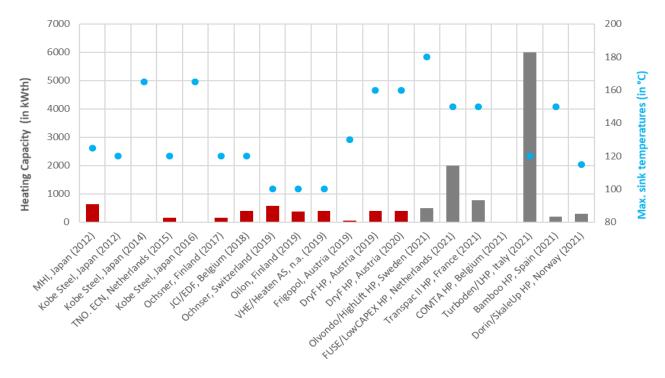


Figure 1 Overview of compression HTHP installations known worldwide (AIT research)

Besides economic reasons such as long pay back periods due to an unfavourable gas-electricity price ratio and low prices for carbon dioxide emissions, a broad market penetration of IHPs in general, and HTHPs in particular, has been hampered up to now by:

- Lack of heat pump technologies allowing supply temperatures of above 120°C.
- Low level of awareness on technical possibilities amongst industrial end-users, but also relevant intermediaries such as energy consultants, plant designers and engineers.
- Limited knowledge on the match between IHP and process demands.
- Limited knowledge on integration of IHP in industrial heat processes.
- Lack of data on heat consumption especially in manufacturing companies not belonging to the energy-intensive industries.

- Lack of trust on reliability and security of the technology due to low numbers of pilot & demo plants, and finally
- Lack of training and events supporting the spread of knowledge on IHPs in general, and HTHPs in particular.

These **limiting factors** already collected in other R&I projects³ also **reflect the experience gathered by the DryFiciency consortium** in the framework of interviews and WS held with industry associations and the projects' external experts, surveys conducted online or during webinars/the final conference, but also in multiple conversations with interested stakeholders addressing consortium members either at events or by addressing the project coordinator by email <u>dryficiency@ait.ac.at</u>.

Therefore, a number of knowledge-sharing and training activities developed, were not only focussed on the DryFiciency project and its heat pump demonstrators but beyond, to promote broad market diffusion of IHP technology. They are reported in section 4.

3 LESSONS LEARNED

The challenges encountered and to be dealt with during project execution were manifold. In the following, the **lessons learned** are described **in a more generalized way**.

- The choice of components and materials as e.g., safety valves or various compressor parts, which are compatible with the media used (refrigerant, steam) and which can withstand elevated operation temperature levels of above 150°C, is crucial and a challenging task. It is important to foresee enough time for profound analysis and testing.
- The **robustness of components & equipment** to be used in industrial environment has to be considered already in an early development stage. Novel components, such as a e.g., a compressor, might work nicely in lab environment, however there are a number of challenges when bringing it into the "real" world including dust, wet particles, etc. which are sometimes difficult to simulate to the full extent in lab environment.
- The **design** of the **heat pump** has to be chosen with great care. It has to be considered, that improvement work will most likely become necessary at the pilot installation. Therefore, all critical components prone to damages in such novel high temperature applications, such as e.g., compressors, need to be positioned in a way that they can be replaced with the lowest possible effort involved without compromising on the performance of the heat pump system and too much on the sizing of the heat pump installation as size matters especially when used for retrofitting.
- The **techno-economic "sweet spot**" between the heat pump and the sizing of the dryer has to be identified first. As far as the heat pump is concerned, higher temperature lifts can be achieved by adding more compression stages, which reduces however the efficiency of the heat pump system. On the other hand, a certain temperature lift is required on the side of the dryer, to get the system running and achieve the gains in efficiency and sizing required.
- The **estimation of costs of pilot installations** is a challenging task and might request more funding than anticipated. Especially, the costs for possible repair and adjustment work are

³ E.g., IEA HPT 48 Industrial Heat Pumps, Second Phase (website); IEA HPP Annex 35 (website)

easily to be underestimated. Therefore, strong commitment of the industrial partners, especially the demo-partners, is required and has to be sought prior to project start.

- In a globalized world, **lead times for components & equipment** vary very much, and can become extremely long in case of a pandemic or any other disturbances in the international transport business. Therefore, their supply has to be secured as early as possible in the project.
- The **involvement of small, innovative, component** or **equipment suppliers** might put an innovation project at risk due to their limited staff resources and often also their financial proneness. Therefore, a "back-up solution" with a larger component / equipment provider is preferable.
- The **involvement of external experts** into an innovation project is of great value, as they bring in constructive advice as well as active promotion and references.

More details on **technical experiences** made and **lessons learned** in context with the **development work on component** and **system level** are published in two other deliverables, in D4.5 <u>"Interim report on the heat pump technologies developed</u>", and D5.4 "Final report on the heat pump technologies developed⁴", which will be published <u>here</u>.

⁴ To be published on the DryFiciency website <u>here</u>.

4 TRAINING AND KNOWLEDGE SHARING ON LESSONS LEARNED

Considering the limiting factors for broad market introduction of IHPs the DryFiciency consortium designed various training and knowledge sharing formats & tools to broadly spread the results, and lessons learned in the projects' development and implementation activities to all target groups concerned keeping in-mind however at all times the economic interests of all project partners concerned, who invested also substantial own funds in this project, which proved challenging in various aspects.

These knowledge transfer & training measures included:

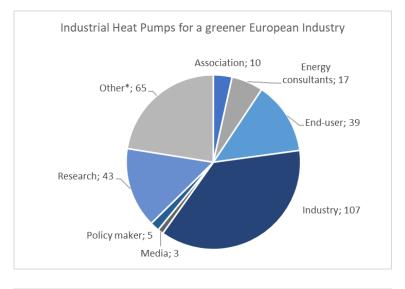
- DryF online seminar series conducted from 30.09.2020 to 21.04.2021 •
- DrvF Final conference on 06.07.2021 •
- DryF training program (3 modules); online trainings conducted: 15.07.2021 to 19.08.2021 •

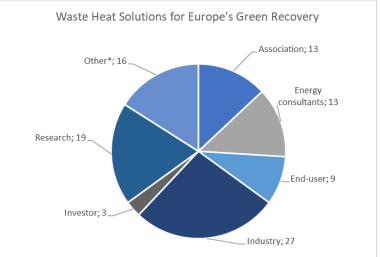
4.1 Online seminars and final conference

- 4.1.1 Main Goals
 - To increase competence on HTHPs and overcome especially non-technical obstacles for its • application such as e.g., lack of knowledge on technologies available and their technical limits, lack of know-how on successful demo installations, etc.
 - To prepare for and facilitate rapid and widespread uptake of HTHP technologies post project by broadly informing on the project, its activities, and results.
- 4.1.2 Main target groups addressed
 - Industrial end-users, policy makers, energy mangers & consultants •
 - Plant engineers & Heat pump manufacturers •
- 4.1.3 Online Seminars

4.1.3.1 Online seminars for industrial end-users, policy makers, energy managers & consultants

This online seminar aimed at showing best practice examples from both state-of-the art IHPs used in the food & beverage industry as well as in the animal health products facility with supply temperatures of up to 90°C as well as current research showcasing HT-HP research projects from the dutch RTO TNO and first operational experiences from the DryF demonstrator for starch drying at Agrana. The presentations are available here.


This online seminar aimed to stress the potential contribution of large HP technologies to the decarbonization of Europe's manufacturing sector. EEAB member Silvia Madeddu from PIK informed on the status of electricifation of industry. DryF partners AIT and SINTEF informed a.o. on HP installations, challenges in development and The recorded online seminar is available here.



The recorded online seminar is available here.

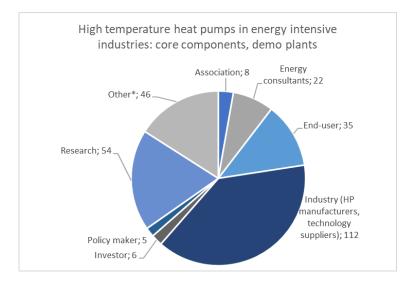
This online seminar aimed at showcasing four projects dealing with energy efficiency including links to the industry either as supplier of waste heat or its user: energy cooperation in industry (R-ACS), recovery and re-use of urbane excess heat (ReUseHeat), re-use of low-temperature renewable energy sources in urban DHC-networks (REWARDHeat), and finally DryFiciency. The presentations are attached in section 5.3

In total, **388 stakeholders participated** in the two seminars conducted in 2021. The following figures show an analysis of the audience in terms of professional background. "Industry" comprises heat pump manufacturers and components thereof as well as other technology suppliers. "Other" includes participants who identified themselves as "self-employed".

4.1.3.2 Online seminars for heat pump manufacturers & plant engineers

The recorded online seminar is available here.

This seminar aimed at informing HP manufactures and plant engineers on the latest developments on component level, covering two compressor technologies, a novel lubrication oil and a new low-GWP refrigerant. DryF partners AIT, Fuchs, Chemours, Bitzer, Rotrex and Heaten reported on the development and adaption of their components for upgrading idle waste heat streams to process heat streams at temperature levels of up to 160°C. The presentations are attached in section 5.3

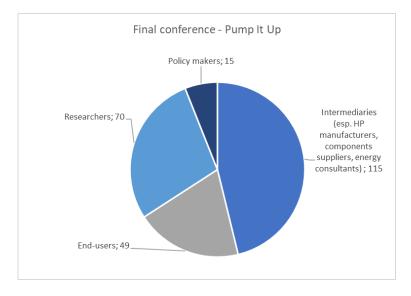

This seminar aimed at informing HP manufactures and plant engineers on the latest developments and results of the three DryF demonstrators on system level. Demo partners Agrana, Wienerberger, and Scanship as well as the scientific partners AIT and SINTEF highlighting some of the projects' achievements

The presentations are attached in section 5.3

The recorded online seminar is available here.

Besides, Veronika Wilk (AIT) regularly presented the projects' progress in the EHPA Working group on "Commercial Heat Pumps" and led – as did Michael Bantle (SINTEF) – individual talks with heat pump manufactures and plant engineers to discuss the uptake of the projects' results.

In total, **288 stakeholders participated** in the online seminars set-up especially for heat pump manufacturers & plant engineers in 04/2021. The following figure shows the professional background of the participants. As evident, the events were also well received in the research community⁵.


⁵ *Other includes participants who identified themselves as "self-employed".

4.1.4 Final conference

This online conference showcased the results from DryFiciency from lab to reality. The conference was opened with an input from IEA show-casing the importance of IHPs as future heating technology, DryF partners AIT, SINTEF and EPCON presented the work conducted, challenges encountered in development and operation of the novel heat pump solutions, the main results and impact achieved as well future steps required to fully commercialise the systems.

In total, **245 stakeholders** from +200 companies/organisations based in 32 countries participated in the projects online conference, which set up as a hybrid event. The following figures shows their professional background.

The recorded conference is available here. The presentations are attached in section 5.3

4.2 DryF training program on IHPs

4.2.1 Main goals

- To prepare for and facilitate rapid and widespread uptake of IHP technologies post project with focus on closed loop DryF[™] HPs.
- To increase awareness, competence and know-how of various target groups thereby overcoming non-technical obstacles such as lack of knowledge on technologies available and their technical limits, know-how on successful demo installations, etc.
- To secure high quality planning, engineering, integration, and maintenance work required for further promoting the use of IHPs especially at elevated temperature levels.

4.2.2 Target group

The training program developed in the DryFiciency project addresses all relevant professionals along the value chain. However, the main target group comprises:

- Energy managers employed at potential industrial end-users, but also freelancers.
- Plant engineers/planners and constructors as well as heat pump manufacturers.
- Process engineers.

Besides, the following groups are addressed:

- Staff of energy agencies, personnel of public funding agencies, energy service contractors, or energy consultants dealing with energy and environmental topics.
- Students at the technical universities such as e.g., Vienna University of Technology, Institute for Energy Systems and Thermodynamics.

4.2.3 Training program

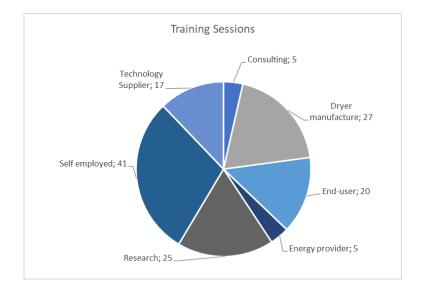
The training program developed by AIT consists of three modules, which are briefly described in terms of target group, requirements, duration, content, learning objectives, skills acquired, and methods to be used in the following.

4.2.3.1 Module 1: Introduction to IHPs

Target group	This introductory module primarily targets all (future) professionals dealing with industrial energy efficiency and environmental topics, who wish to gain an overview of the potential and benefits of industrial heat pumps (IHPs) with a focus on high temperature heat pumps (HTHPs). This includes non-technicians such as staff of energy agencies and public funding agencies, energy service contractors, and consultants, but also future technical professionals (students) and all technicians addressed by the other two modules.
Requirements	None
Duration	2 hours
Content	 Current industrial energy demand and energy sources used. Industrial energy and environmental targets. Application potential of IHPs and especially HT-HPs (sectors, processes, barriers/obstacles)

	 Best practices examples of IHPs and ongoing research activities on HT- HPs focusing on DryFiciency. Costs and benefits of IHPs and HT-HPs.
Learning objectives	 Know relevant energy and environmental targets. Know potential applications for IHPs, especially HT-HPs and their boundary conditions. Know ongoing research activities & fields Know best practice and demo examples of IHPs and HT-HPs. Know environmental impact of IHPs and HT-HPs. Know CAPEX and OPEX of IHPs.
Skills acquired	No special technical skills but a good overview of IHPs, the technologies available, their potential and applications focusing especially on HT-HPs.
Methods used	 Web-based training in German and English Lecture in classroom (on demand) Videos of DryFiciency demo sites Factory tour to the Agrana use case (on demand)
Certificate	Certificate of Participation
Training material	The training material developed is attached in section 5.2 in both English and German.

4.2.3.2 Module 2: Components and Specifications of IHPs


Target group	This module targets professionals dealing with planning, designing or operating industrial energy efficiency and heat recovery technologies, who wish to extend their knowledge and skills to IHPs and especially HT-HPs and their use in industrial processes focusing on drying and dehydration. This includes process engineers, energy managers and industrial plant planners/constructors.
Requirements	 Knowledge in thermal energy technologies Knowledge in relevant industrial processes Knowledge on refrigeration technologies and working principles
Duration	4 hours
Content	 Industries & processes suitable for IHPs Components for IHPs with focus on HTHPs Refrigerants and refrigeration oils to be used in high temperature heat recovery applications. Properties of IHPs Planning of integration and dimensioning of IHPs with focus on high temperatures and drying / dehydration processes. Best practice examples and demo plants
Learning objectives	 Know requirements for components, lubricants and working fluids used in IHPs at elevated temperature levels. Know requirements for the application of IHPs, esp. HTHPs. Know processes suitable for HTHPs. Know relevant regulatory requirements and standards. Be acquainted with planning principles for IHP.
Skills acquired	• To be able to calculate the efficiency of IHP (COP, SCOP)

	• To be able to calculate the required power and temperatures of IPHs with respect to the properties of the industrial processes concerned.
Methods used	 Web-based training in German and English Lecture in classroom (on demand) Videos of DryFiciency demo sites Factory tour to the Agrana use case (on demand)
Certificate	Certificate of Participation
Training material	Is not publicly available.

4.2.3.3 Module 3: Installation, Commissioning, Operation and Maintenance of IHPs

Target group	This module targets professionals dealing with integration, commissioning and maintenance of industrial energy efficiency and heat recovery technologies, who wish to extend their knowledge and skills to IHPs and especially HT-HPs. This includes especially process engineers, energy managers, heat pump integrators.
Requirements	 Knowledge in thermal energy technologies Knowledge in relevant industrial processes Knowledge on refrigeration technologies and working principles
Duration	2 hours + 1/2 day each for factory tour to demo-sites
Content	 Personnel requirements (legal issues, required skills) Safety and security requirements Specifics of installing, commissioning and operating IHPs Typical failures of IHPs Specifics of maintaining IHPs
Learning objectives	 Know legal issues in regard to integration, commissioning and maintenance of IHPs with focus on HTHPs. Know relevant safety and security regulations. Know required maintenance intervals and indications for malfunctioning of IHPs.
Skills acquired	 To be able to integrate IHPs analogously to conventional heating units with respect to their specific properties. To be able to commission IHPs or to support the commissioning by the plant constructor. To be able to perform respectively coordinate maintenance works of heat pumps on-site.
Methods used	 Web-based training in German and English Lecture in classroom (on demand) Videos of DryFiciency demo sites Factory tour to the Agrana use case (on demand)
Certificate	Yes. Certificate of Participation.
Training material	Is not publicly available.

In total, **140 stakeholders** from **+40 companies/organisations** participated in the first training sessions. Each of the modules was offered twice. Module 1 on 15.7. and 05.08.; Module 2 on 22.07. and 12.08. and Module 3 on 29.07. and 19.08.2021. They were planned to be hold in a classroom setting to allow for more personal interactions but were finally conducted via MS Teams due to COVID-19. The following chart shows the professional background of the participants. Nearly 50% of the trainees participated in all three Modules; about one third did two, and only one fifth took part in one training Module only

In future, the trainings will be offered by AIT in both formats, with classroom lectures to be conducted on demand. The trainings will be offered in both German and English, depending on the demand.

In a next step, the training material (PowerPoint slides) developed will be updated with the input received by the participants of the first training sessions and will then be integrated into AITs certified training program for intermediaries, which will be continuously further developed by integrating the results and lessons learned from other IHP demo-projects as e.g., the H2020 <u>BAMBOO</u> project, where a HTHP is to be demonstrated in a steel plant, or the nationally funded NEFI project <u>Leap</u>, where innovative integration measures based on HP systems for low-pressure steam supply are being developed and demonstrated two industrial processes.

The future training sessions will also include exams and – besides a certificate of participation – corresponding DryF certificates for process engineers, energy managers and industrial plant planners/constructors. DryF shall be established as quality label for both, efficient HTHPs and qualified installation and operation.

The training schedule for 2022 is to be found <u>here</u> soon.

5 MATERIALS FOR CAPACITY BUILDING

In the following, the tools and materials developed for capacity building are compiled.

5.1 YouTube Videos

The video on the project results is available here

The video on the demo plant for brick drying is available <u>here</u>

sites in 29 countries and is the world's

3:10

s 197 pr

The video on the Demo plant for sludge drying is available <u>here</u>

The video on the demo plant for starch drying is available <u>here</u>

The video on lessons learned in the open loop HP development is available <u>here</u>

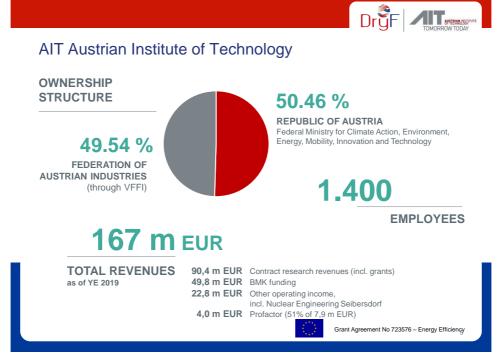
The video on the major challenges in commercialising the open loop HP is available <u>here</u>

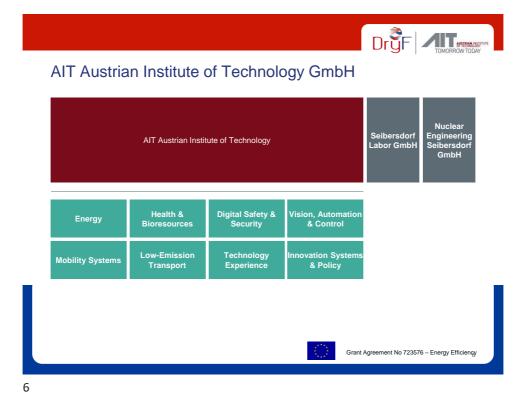
The video showing the view of client of the open loop HP is available <u>here</u>

The video on future R&D required on the open loop HP is available \underline{here}

5.2 DryF Training program – Module 1

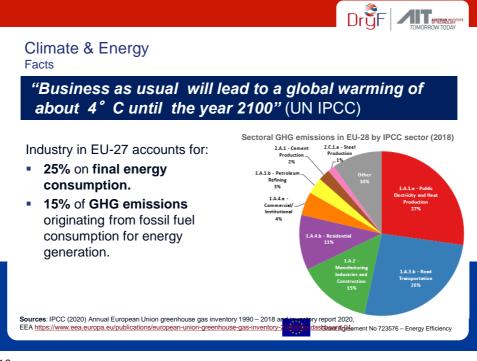
In the following, the training materials for Module 1 is provided in both English and German.

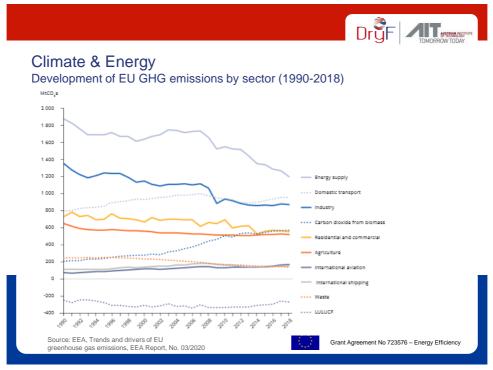



Grant Agreement No 723576 - Energy Efficiency

Introduction AIT

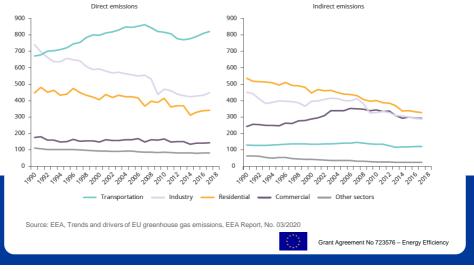
Focus of the centers

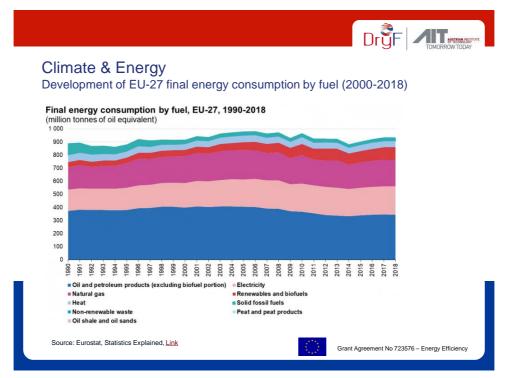

Energy	Health & Bioresources	Digital Safety & Security	Vision, Automation & Control
Electric Energy Systems Integrated Energy Systems Photovolaic Systems Digital Resilient Cities Sustainable Thermal Energy Systems	 Biomedical Systems Bioresources Digital Health Information Systems Molecular Diagnostics 	Security & Communication Technologies Sensing & Vision Solutions Data Science & Artificial Intelligence Cooperative Digital Technologies	Assistive & Autonomous Systems Complex Dynamical Systems High-Performance Vision Systems
Mobility Systems	Low-Emission Transport	Technology Experience	Innovation Systems & Policy
Dynamic Transportation Systems Transportation Infrastructure Technologies	Electric Drive Technologies Light Metals Technologies Ranshofen	 Experience Contexts and Tools Experience Business Transformations 	Digital Innovation Foresight & Institutional Change Policies for Change
		Grant Agre	eement No 723576 – Energy Efficien



Climate & Energy

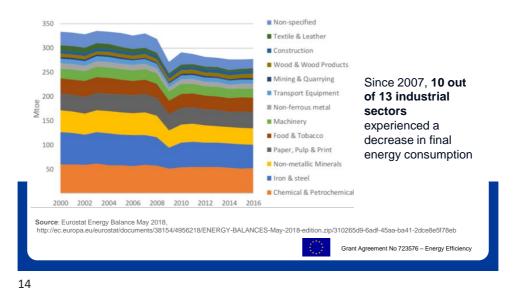
Trends & Targets

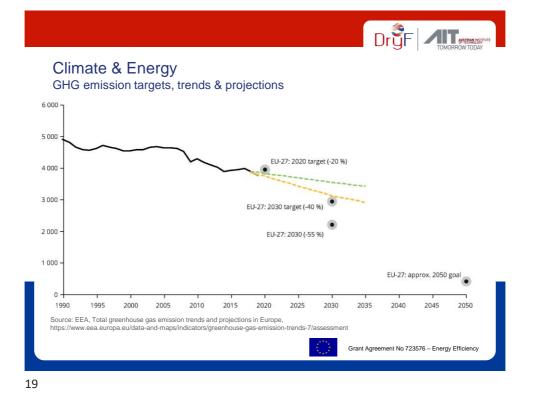




Climate & Energy

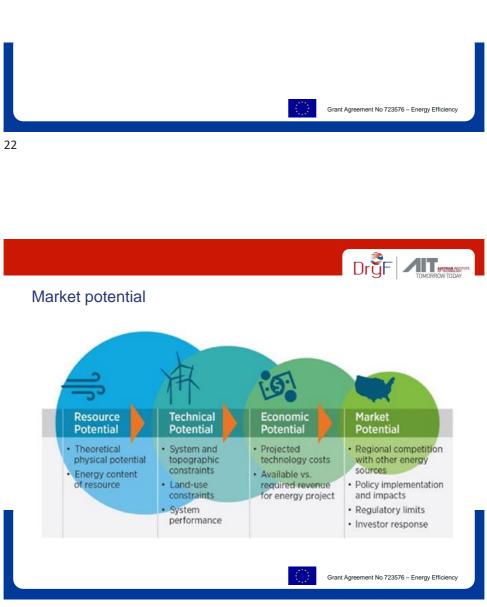
Energy-related GHG emissions by sector (1990-2017)





Climate & Energy

Development of EU final energy consumption by industry sectors (2000-2016)


Climate & Energy Targets 2030 Energy Strategy 2030 Cut in GHG emissions (comp. to 1990 levels) by 40% At least 32% share of renewable energy consumption (upward revisions clause for 2023) Improvement in energy efficiency at EU level of at least 32.5% Support completion of internal energy market by achieving existing electricity interconnection target of 10% by 2020 (view to reaching 15% by 2030) Grant Agreement No 723576 - Energy Efficiency Source: IPCC (2018) http://www.ipcc.ch/report/sr15/ 18

Climate & Energy Potential contribution of Industrial Heat Pumps to EU targets EU Target 32,5% energy efficiency goal for 2030 END ENERGY EFFICIENCY 7-18% **Potential** 2-6% PRIMARY ENERGY EFFICIENCY contribution of Waste heat recovery means a more efficient use of energy in industries. the DryFiciency project EU Target 40% CO₂ emission reduction for 2030 ALL SECTORS 3-7% MANUFACTURING SECTOR 14-35% Waste heat recovery means significant contributions from the industry. Assumptions: 50% of all drying processes in EU are equipped with DryF HP (average COP: 3; heat source: 70, Heat sink: 140, replacement of natural gas burners with thermal eff. of 95% Source: DryFiciency Grant Agreement No 723576 - Energy Efficiency

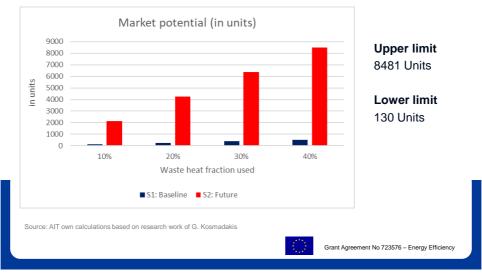
Market for High Temperature Heat Pumps

Economic Feasibility of HTHPs

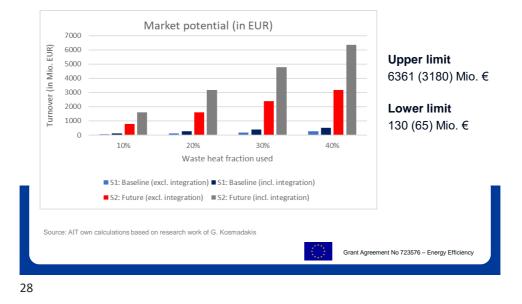
Advantageous conditions for IHPs include:

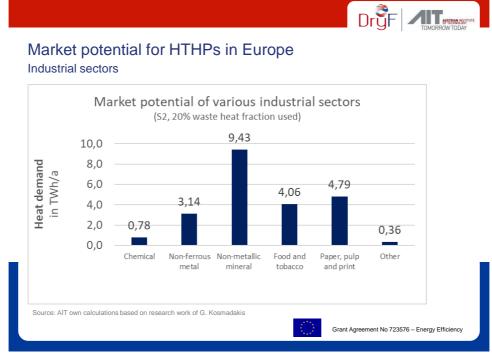
- · High ratio of gas to electricity price
- High CO₂ prices (depending on carbon intensity of electricity)

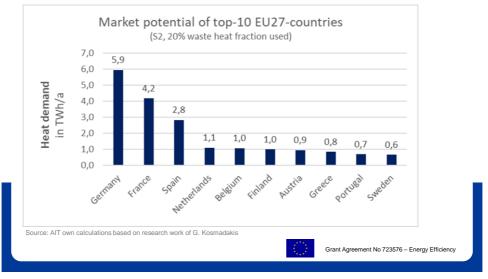
Boundary conditions for the calculation of the economic market potential

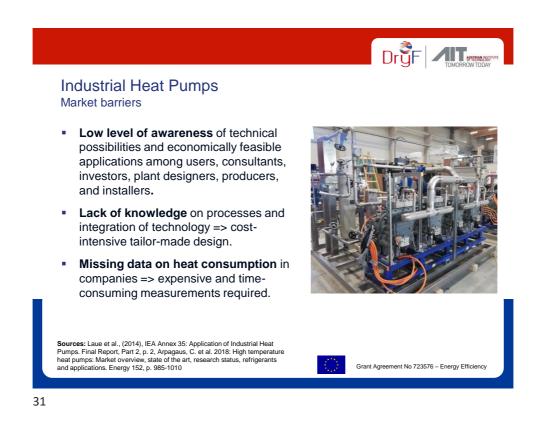

	Unit	In 2020 S1: " <i>B</i> aseline"	In 2025 S2: " <i>Future</i> "
CAPEX Reference technology (gas boiler)	€/kW	100	100
CAPEX Integration of reference technology	€/kW	100	100
CAPEX Heat pump	€/kW	500	375*
CAPEX Integration heat pump	€/kW	500	375*
CO ₂ -price	€/t	25	80
Changes in energy prices (Basis: Eurostat, 2019S1)	-	0%	+20%
Max. payback time	a (Jahre)	5	5
Full load hours	h/a	5256	5256
 25% reduction by public subsidies and cost reductions of the HP-technology (economies of scale) 	le).	Grant Agreement No 72	3576 – Energy Efficiency

25


Market potential for HTHPs in Europe


Sales in Units (conservative estimations based on waste heat fraction used)


Market potential for HTHPs in Europe Sales in EUR (conservative estimations)

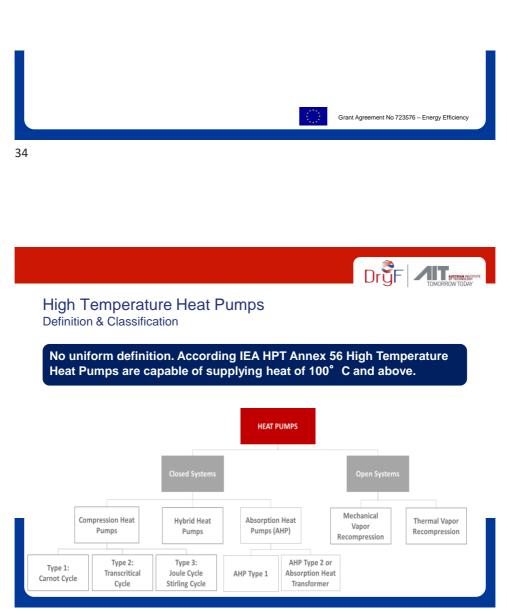


Market potential for HTHPs in Europe Top 10 EU-27 countries

Industrial Heat Pumps Market barriers

- Long payback periods of >3 yrs.
- Competing heating technologies generating high temperature using fossil fuels at low energy prices (electricity to gas-price ratio).
- Lack of pilot & demonstration plants of HTHPs results in lack of trust on feasibility & performance; reliability of process is more important than energy savings.
- Lack of training and events supporting the spread of knowledge on HTHPs

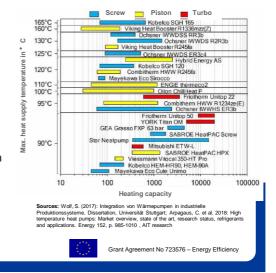
Sources: Laue et al., (2014), IEA Annex 35: Application of Industrial Heat Pumps. Final Report, Part 2, p. 2, Arpagaus, C. et al. 2018: High temperature heat pumps: Market overview, state of the art, research status, refrigerants and applications. Energy 152, p. 985-1010, T. Nowak, (2018), Feedback from Meeting with Industry Associations

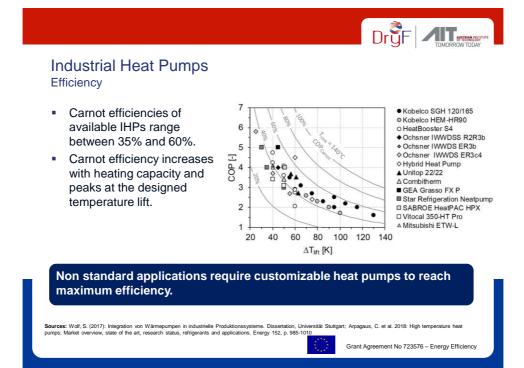

Grant Agreement No 723576 - Energy Efficiency

s Strengths	 Maturing technology & widening range of available products Documented references available Large energy efficiency gain and GHG emission reduction No local pollutant emissions 	 Relatively high CAPEX Relatively complex process integration 	Weaknesses
Opportunities	 Large technical potential Enforcement of climate change mitigation politics Increasing ETS carbon prices Supportive regulations and subsidies Decarbonizing electricity mix 	 High electricity prices and low fossil fuel prices Short payback periods expected Lack of knowledge among planners and energy managers 	Inreats

High Temperature Heat Pumps (HTHPs)

State-of-the Art

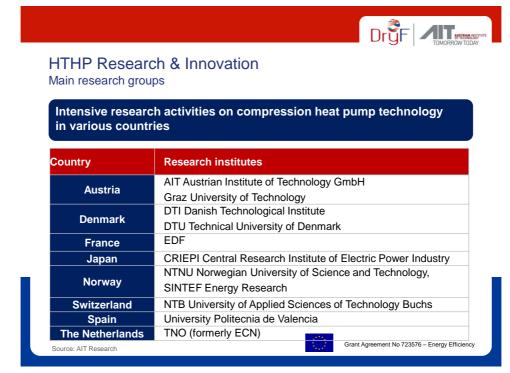




Industrial Heat Pumps

Commercially available systems

- Compression heat pumps are the most common type.
- 19 HP manufactures known commercially offering HTHPs
- Heat output up to max. 165 ° C (Kobelco = cascading system, available only in Japan);
- Heat output up to 120° C SoA in Europe
- Heating capacity up to 20 MWth
- Low GWP refrigerants partially in use.
- 1 and 2-stage closed loop cycles are the most common heat pump designs.



High temperature heat pumps

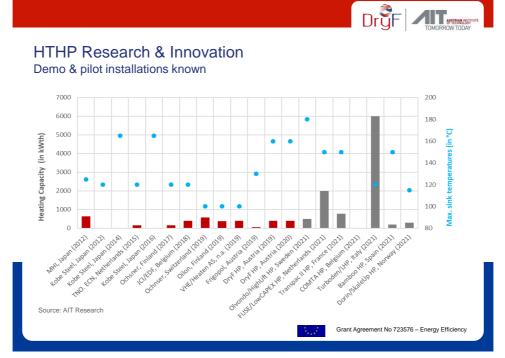
Ongoing research activities

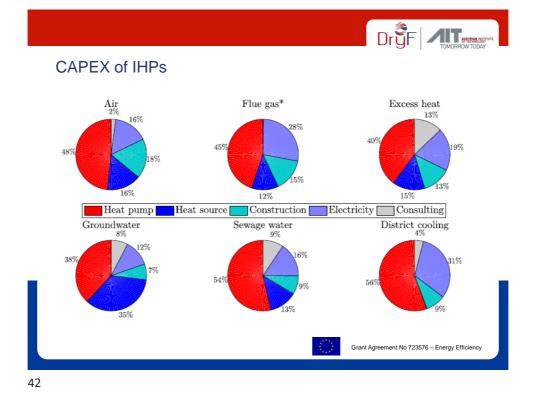
HTHP Research & Innovation Main research topics

COMPONENT LEVEL

- Novel / adapted compressor technologies
- Novel lubricants working well with new HFO or natural refrigerants
- Improved material properties of components e.g. sealings, heat exchangers,...
- More cost-efficient components

SYSTEM LEVEL


- Various heat pump configurations (cascade systems with different working fluids, with/without intercoolers, ...)
- Large scale demo & pilot installations



Source: Rotrex A/S

Grant Agreement No 723576 - Energy Efficiency

Distribution of specific investment costs (SEC)

Distribution of total SEC in €/kW of a HP	Heating capacity		
using excess heat as heat source	≤ 500 kW	≤ 1000 kW	≤ 4000 kW
Heat Pump Unit (40%)	520	388	288
Heat source (15%)	195	145.5	108
Construction (13%)	169	126.1	93.6
Electricity (19%)	247	184.3	136.8
Consulting (13%)	169	126.1	93.6
Specific total investment costs	1300	970	720

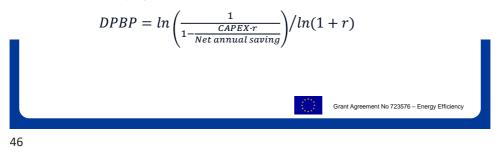
Grant Agreement No 723576 - Energy Efficiency

Grant Agreement No 723576 - Energy Efficiency

SEC for different working principles

Working principle	SEC in €/kWth
Low Temp. Compression HP (up to 90°C)	800 to 2000
High Temp. Compression HP (up to 140°C)	2000 to 5000
Chemical/Absorption HP	1500 to 3000
Steam compression	100 to 150
MVR based HP	200 to 600

Source: Navigant, Verkenning uitbreiding SDE+ met industriële opties, 2019; M. Marsidi, Factsheet Industrial High Temperature Heat Pumps, 2018, https://energy.nl/wp-content/uploads/2019/06/Industrial-high-temperature-heat-pump-2.pdf, accessed 2 December 2020.


<section-header><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Profitability of IHPs

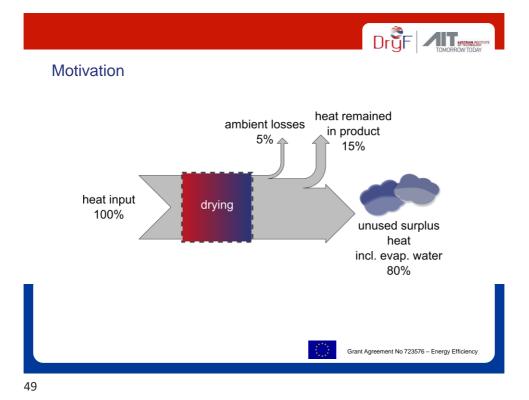
Simple pay back method

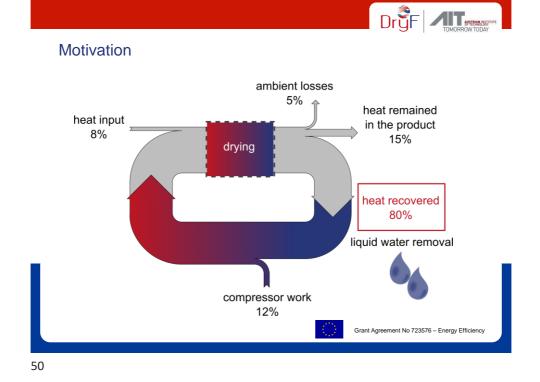
 $PBP = \frac{CAPEX \text{ or total investment costs}}{Average \text{ annual net cashflow}}$

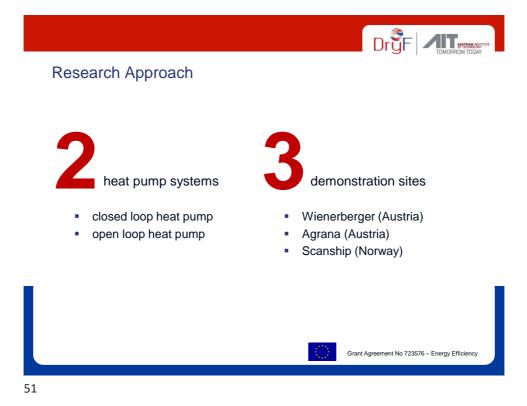
Discounted pay back method

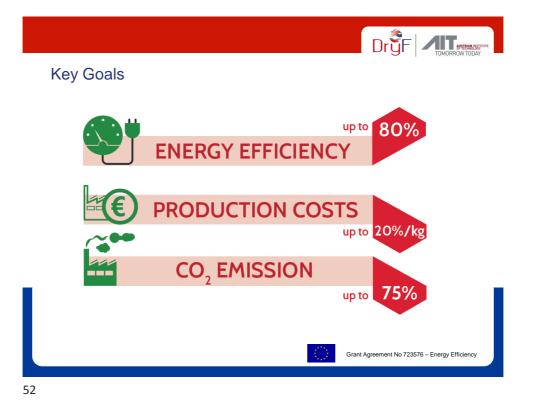
Challenge

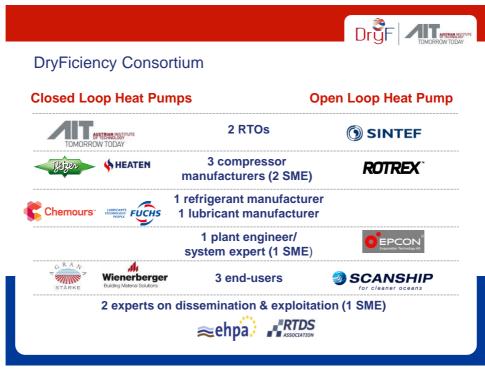
12 to 25 %

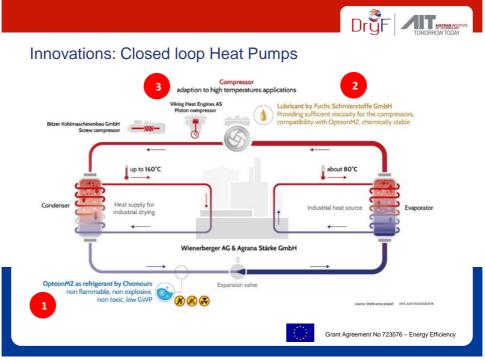

of final energy consumption in industry is used for drying & dehydration processes.


Processes are currently primarily **fossilfired** and generate large volumes of **low grade waste heat** that is not or only minimally utilized.



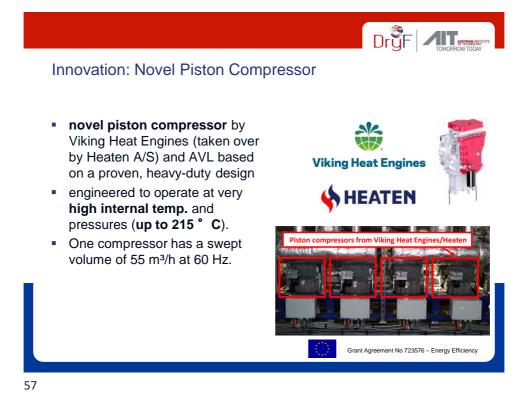

Industrial drying offers large potential for improved energy efficiency, reduction of fossil carbon emissions, and increased competitiveness by introducing advanced energy efficiency technologies.


Grant Agreement No 723576 - Energy Efficiency



Technical Objectives

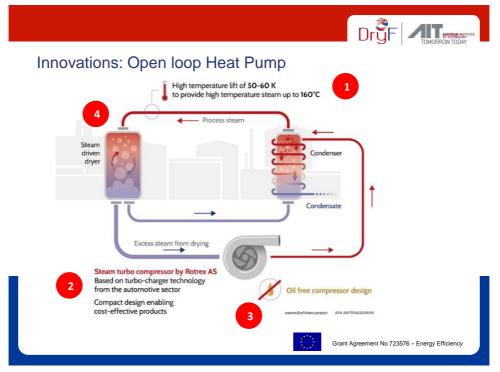
- Develop viable solutions for upgrading idle waste heat streams to process heat streams at higher temperatures up to 160°C
- Key elements of the solution are three advanced high temperature vapour compression heat pumps
 - » two closed loop heat pumps for air drying processes
 - » one open loop heat pump for steam driven drying processes

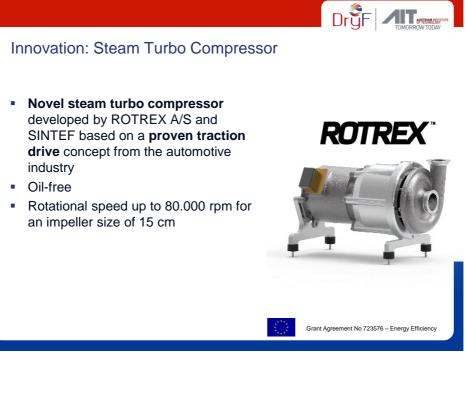

Innovation: Modified Screw Compressor

- modified semi-hermetic screw compressor based on Bitzer's' proven HS series
- for suction gas temp. up to 100° C and discharge temp. up to 160° C
- two-shaft rotary displacement design with high efficiency profile geometry
- swept volume of 300 m³/h at 60 Hz operation frequency
- Optimized for parallel operation with up to 6 compressors

Grant Agreement No 723576 - Energy Efficiency

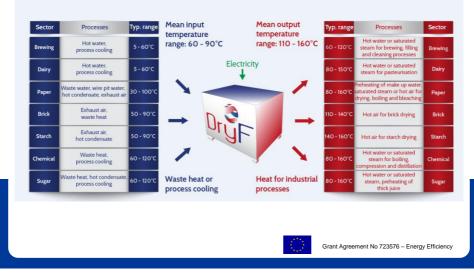
FUCHS


Chemours[®]


Grant Agreement No 723576 - Energy Efficiency

- 160°C) and max. pressure of 18 bar chemically stable when operated with OpteonMZ (HFO-1336mzz-Z) from Chemours
- was enhanced with additives to prevent degradation of both, lubricant and refrigerant

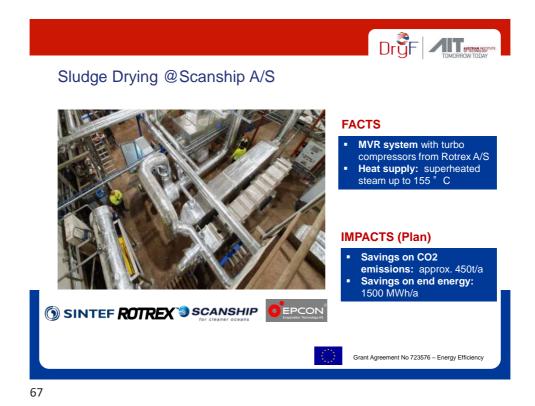
58




Industrial sectors targeted by DryFiciency

62

Industrial applications suitable for DryFiciency Heat Pumps



0-

Project contacts

Coordination:

Dr. Veronika Wilk veronika.wilk@ait.ac.at

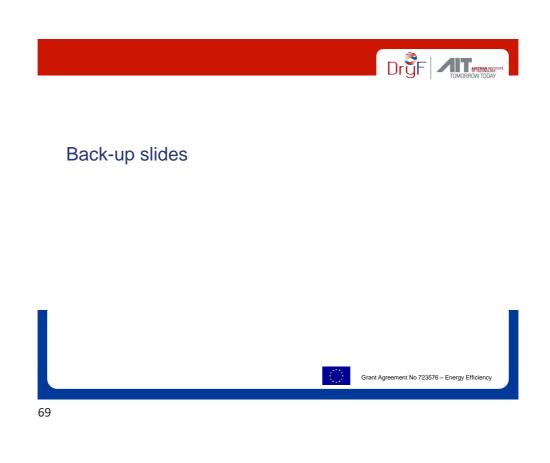
Training:

68

Dr. Michael Lauermann michael.lauermann@ait.ac.at

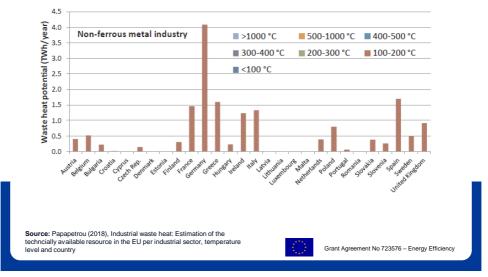
Center for Energy Sustainable Thermal Energy Systems **AIT Austrian Institute of Technology GmbH** Giefinggasse 2, 1210 Vienna, Austria T +43 50550 - 6494 M +43 664 88390018 http://www.ait.ac.at

Contact:

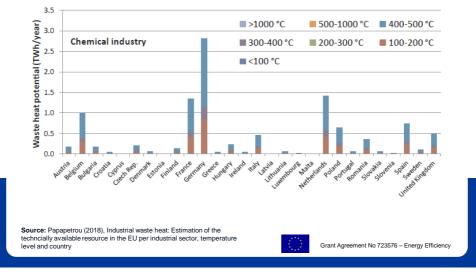

Email us: dryficiency@ait.ac.at

Visit <u>www.dryficiency.eu</u> and sign up to our **Newsletter** to stay updated.

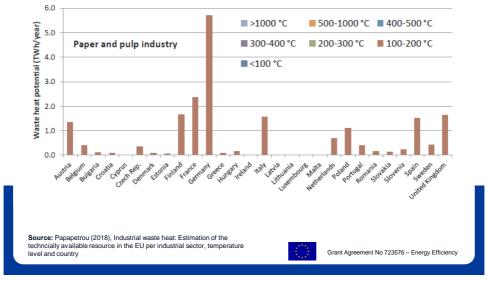
Follow us on **LinkedIn** and **Twitter**:

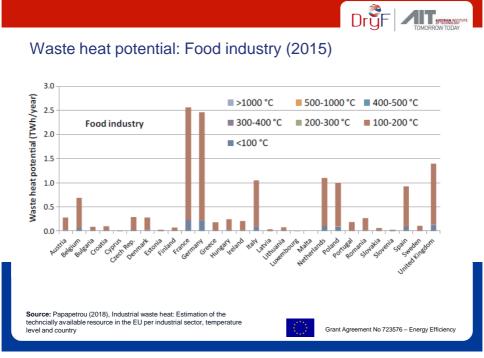


Grant Agreement No 723576 - Energy Efficiency

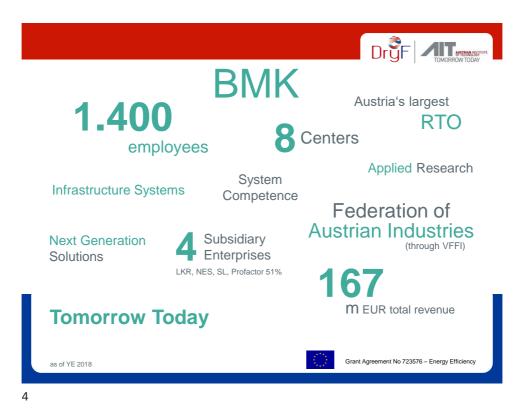

Waste heat potential: Non-ferrous metal (2015)

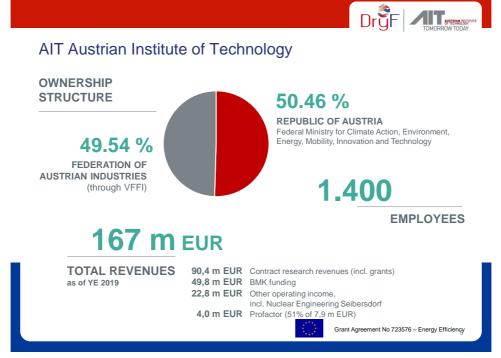
70

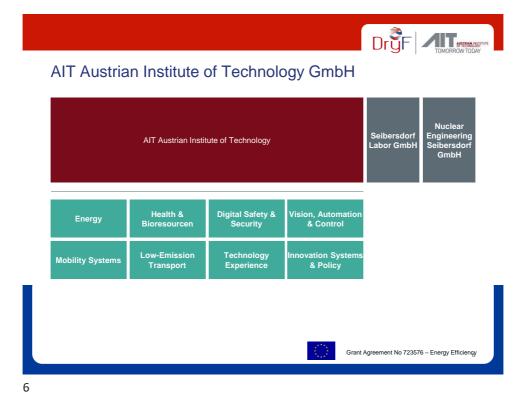



Waste heat potential: Chemical industry (2015)

Waste heat potential: Pulp & Paper industry (2015)

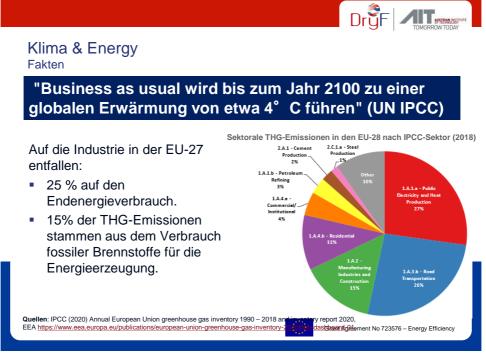


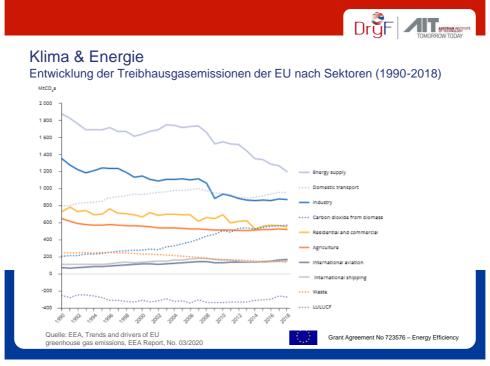




Einleitung AIT

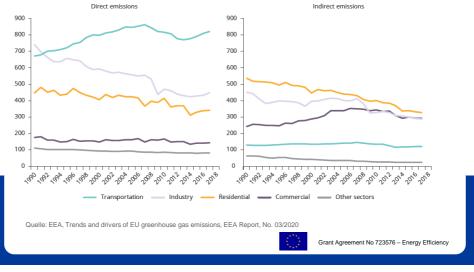
Focus of the centers

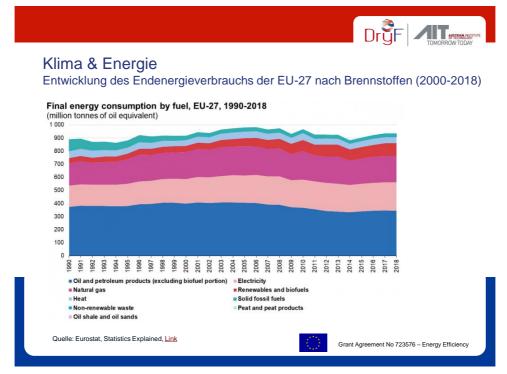

Energy	Health & Bioresourcen	Digital Safety & Security	Vision, Automation & Control
Electric Energy Systems Integrated Energy Systems Photovoltaic Systems Digital Resilient Cities Sustainable Thermal Energy Systems	Biomedical Systems Bioresourcen Digital Health Information Systems Molecular Diagnostics	Security & Communication Technologies Sensing & Vision Solutions Data Science & Artificial Intelligence Cooperative Digital Technologies	Assistive & Autonomous Systems Complex Dynamical Systems High-Performance Vision Systems
Mobility Systems	Low-Emission Transport	Technology Experience	Innovation Systems & Policy
Dynamic Transportation Systems Transportation Infrastructure Technologies	Electric Drive Technologies Light Metals Technologies Ranshofen	 Experience Contexts and Tools Experience Business Transformations 	Digital Innovation Foresight & Institutional Change Policies for Change
		Grant Agr	eement No 723576 – Energy Efficie



Klima und Energie

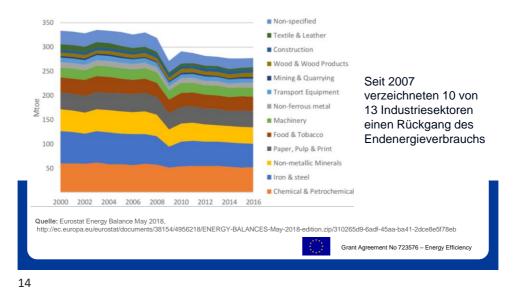
Trends & Ziele

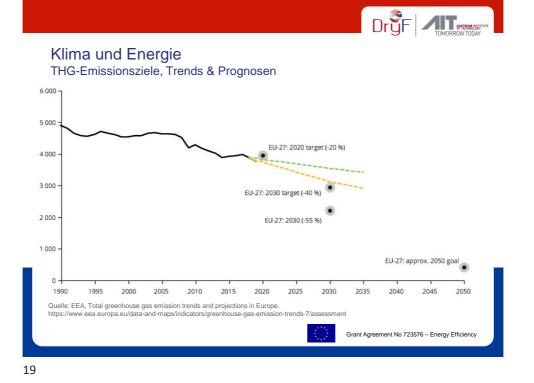




Klima & Energie

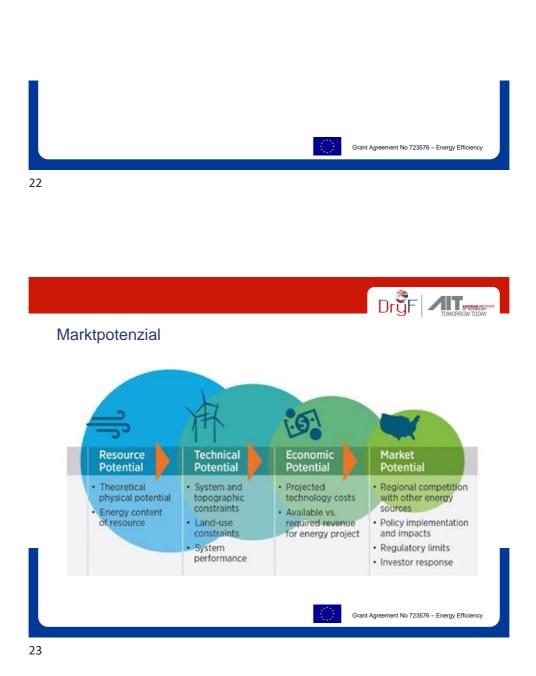
Energiebedingte THG-Emissionen nach Sektoren (1990-2017)





Klima & Energie

Entwicklung des Endenergieverbrauchs der EU nach Industriesektoren (2000-2016)

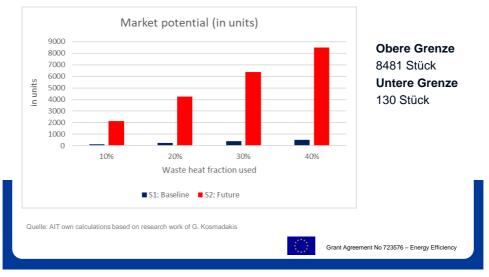

<image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image>

Klima und Energie Potenzieller Beitrag industrieller Wärmepumpen zu den EU-Zielen EU Target 32,5% energy efficiency goal for 2030 END ENERGY EFFICIENCY 7-18% Potenzieller 2-6% PRIMARY ENERGY EFFICIENCY **Beitrag des** Waste heat recovery means a more efficient use of energy in industries. **DryFiciency-Projekts** EU Target 40% CO₂ emission reduction for 2030 ALL SECTORS 3-7% MANUFACTURING SECTOR 14-35% Waste heat recovery means significant contributions from the industry. Annahmen: 50% aller Trocknungsprozesse in der EU sind mit DryF WP ausgestattet (durchschnittlicher COP: 3; Wärmequelle: 70, Wärmesenke: 140, Ersatz von Erdgasbrennern mit thermischer Eff. von 95% Quelle: DryFiciency Grant Agreement No 723576 - Energy Efficiency

Markt für Hochtemperatur-Wärmepumpen

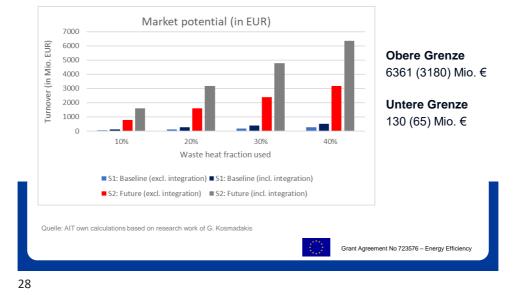
Wirtschaftlichkeit von HT-WP

Vorteilhafte Bedingungen für IWP sind:

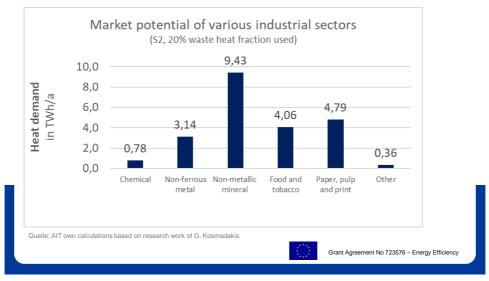

- · Hohes Verhältnis von Gas- zu Strompreis
- · Hohe CO2-Preise (abhängig von der Kohlenstoffintensität des Stroms)

Randbedingungen für die Berechnung des wirtschaftlichen Marktpotenzials

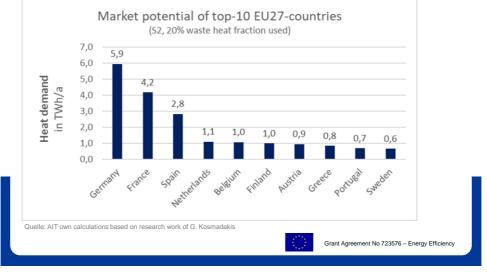
	Unit	In 2020 S1: " <i>Baseline</i> "	In 2025 S2: " <i>Future</i> "
CAPEX Referenztechnologie (Gaskessel)	€/kW	100	100
CAPEX Integration von Referenztechnologie	€/kW	100	100
CAPEX Wärmepumpe	€/kW	500	375*
CAPEX Integration Wärmepumpe	€/kW	500	375*
CO ₂ -Preis	€/t	25	80
Veränderungen der Energiepreise (Basis: Eurostat, 2019S1)	-	0%	+20%
Max. payback time	a (Jahre)	5	5
Vollaststunden His subsidies and cost reductions of the WP-technology (economies of sca	h/a le).	5256 Grant Agreement No 723	5256 576 – Energy Efficiency


25

Marktpotenzial für Hochtemperatur-Wärmepumpen in Europa Umsatz in Einheiten (konservative Schätzungen auf Basis der verw. Abwärmeanteil)



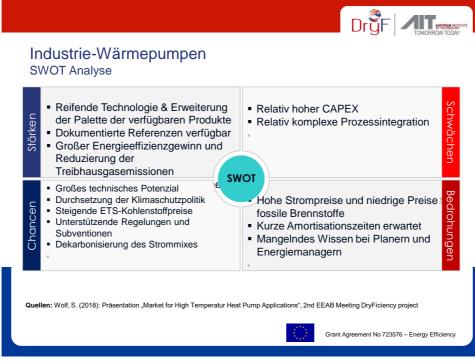
Marktpotenzial für Hochtemperatur-Wärmepumpen in Europa Umsatz in EUR (konservative Schätzungen)



Marktpotenzial für Hochtemperatur-Wärmepumpen in Europa Industriesektoren

Marktpotenzial für Hochtemperatur-Wärmepumpen in Europa Top 10 EU-27 Länder

Industrie-Wärmepumpen Marktbarrieren

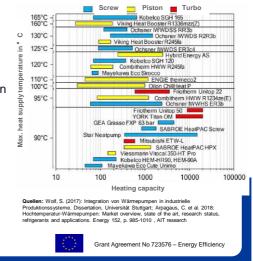

- Lange Amortisationszeiten von > 3 Jahren.
- Konkurrierende Heiztechnologien, die hohe Temperaturen mit fossilen Brennstoffen zu niedrigen Energiepreisen erzeugen (Strom-Gas-Preis-Verhältnis).
- Das Fehlen von Pilot- und Demonstrationsanlagen von HT-WP führt zu mangelndem Vertrauen in Machbarkeit und Leistung; Prozesssicherheit ist wichtiger als Energieeinsparung.

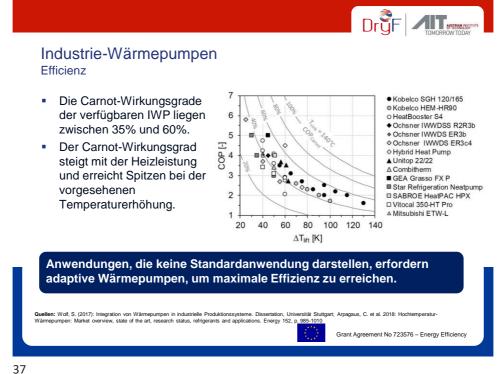
 Mangel an Schulungen und Veranstaltungen zur Wissensvermittlung über HT-WP

Quellen: Laue et al., (2014), IEA Annex 35: Application of Industrie-Wärmepumpen. Final Report, Part 2, p. 2, Arpagaus, C. et al. 2018: Hochtemperatur-Wärmepumpen: Market overview, state of the art, research status, refrigerants and applications. Energy 152, p. 985-1010, T. Nowak, (2018), Feedback from Meeting with Industry Associations

Hochtemperatur-Wärmepumpen (HT-WP)

State-of-the Art





Industrie-Wärmepumpen

Handelsübliche Systeme

- Kompressionswärmepumpen sind der häufigste Typ.
- 19 WP Hersteller, die kommerziell HT-WP anbieten
- Versorgung bis max. 165 ° C (Kobelco = Kaskadensystem, nur in Japan verfügbar);
- Heizleistung bis 120° C SoA in Europa
- Heizleistung bis 20 MWth
- Kältemittel mit niedrigem GWP teilweise im Einsatz.
- 1- und 2-stufige Closed-Loop-Zyklen sind die gebräuchlichsten Wärmepumpenkonstruktionen.

Hochtemperatur-Wärmepumpen

Laufende Forschungsaktivitäten

	rpunkte	
	hungsaktivitäten zur värmepumpentechnologie in verschiedenen Ländern	
Land	Forschungsinstitute	
6	AIT Austrian Institute of Technology GmbH	
Austria	Technische Universität Graz	
Dänemark	DTI Danish Technological Institute	
Danemark	DTU Technical University of Denmark	
Frankreich	EDF	
Japan	CRIEPI Central Research Institute of Electric Power Industry	
	NTNU Norwegian University of Science and Technology,	
Norwegen	SINTEF Energy Research	
Schweiz	NTB Technische Hochschule Buchs	
Spanien	University Politecnia de Valencia	
Niederlande	TNO (formerly ECN)	

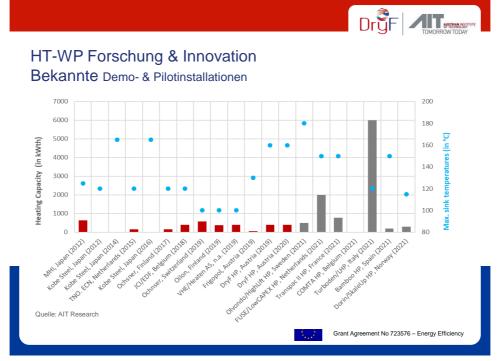
HT-WP Forschung & Innovation

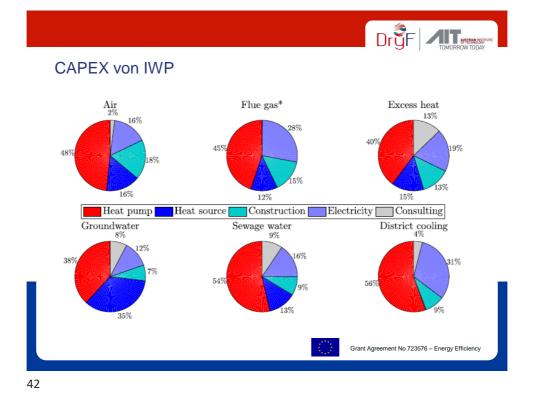
Forschungsschwerpunkte

KOMPONENTENEBENE

- Neuartige / angepasste Kompressortechnologien
- Neuartige Schmierstoffe, die gut mit neuen HFOoder natürlichen Kältemitteln arbeiten
- Verbesserte Materialeigenschaften von Bauteilen wie z.B. Dichtungen, Wärmetauscher,...
- Kostengünstigere Komponenten

SYSTEMEBENE


- Verschiedene Wärmepumpenkonfigurationen (Kaskadensysteme mit unterschiedlichen Arbeitsflüssigkeiten, mit/ohne Ladeluftkühler, ...)
- Große Demo- und Pilotinstallationen



Quelle: Rotrex A/S

40

Verteilung der spezifischen Investitionskosten (SEC)

Distribution of total SEC in €/kW of a HP	Heating capacity		
using excess heat as heat source	≤ 500 kW	≤ 1000 kW	≤ 4000 kW
Heat Pump Unit (40%)	520	388	288
Heat source (15%)	195	145.5	108
Construction (13%)	169	126.1	93.6
Electricity (19%)	247	184.3	136.8
Consulting (13%)	169	126.1	93.6
Specific total investment costs	1300	970	720

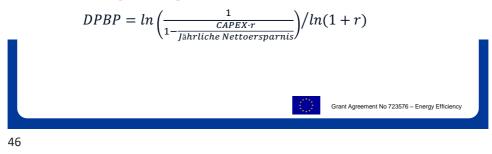
Grant Agreement No 723576 - Energy Efficiency


Grant Agreement No 723576 - Energy Efficiency

SEC verschiedener Arbeitsmitttel

Working principle	SEC in €/kWth
Low Temp. Compression HP (up to 90°C)	800 to 2000
High Temp. Compression HP (up to 140°C)	2000 to 5000
Chemical/Absorption HP	1500 to 3000
Steam compression	100 to 150
MVR based HP	200 to 600

Quelle: Navigant, Verkenning uitbreiding SDE+ met industriële opties, 2019; M. Marsidi, Factsheet Industrial Hochtemperatur-Wärmepumpen, 2018, https://energy.nl/wp-content/uploads/2019/06/Industrial-high-temperature-heat-pump-2.pdf, accessed 2 December 2020.



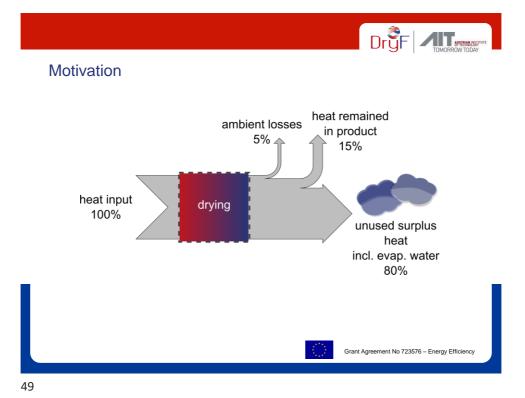
Rentabilität von IWP

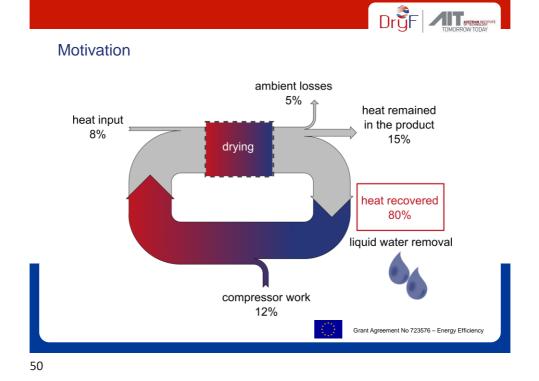
Einfache Amortisationsrechnung

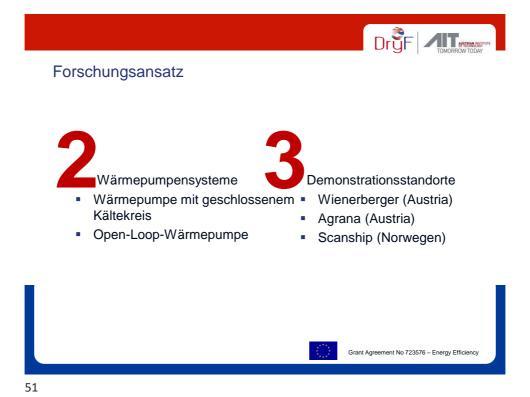
 $PBP = \frac{CAPEX \ bzw. \ Gesamt investitions kosten}{Durchschnittlicher \ jährlicher \ Netto - Cashflow}$

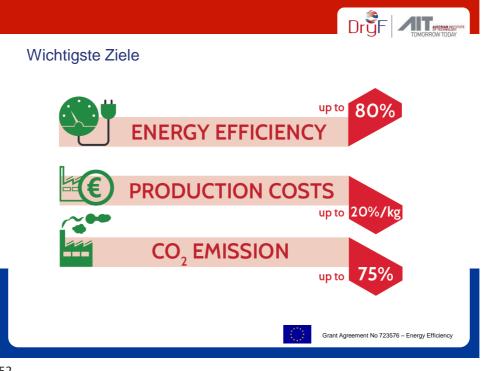
Berechnung der abgezinsten Amortisationszeit

Herausforderung

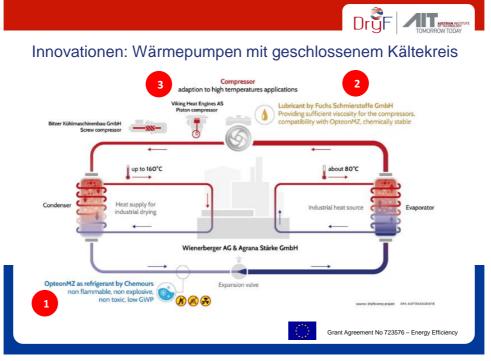

12 bis 25 %


des industriellen Endenergieverbrauchs wird für **Trocknungsprozesse** verwendet.


Diese erden aktuell überwiegend **fossil** befeuert und erzeugen große Mengen an **minderwertiger Abwärme**, die nicht oder nur minimal genutzt wird.



Industrielle Trocknung bietet ein großes Potenzial für eine verbesserte Energieeffizienz, die Reduktion von CO2-Emissionen und eine erhöhte Wettbewerbsfähigkeit durch die Einführung fortschrittlicher Energieeffizienztechnologien.

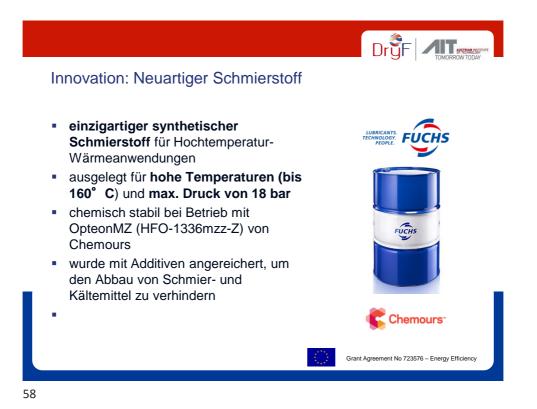


Technische Ziele

- Entwicklung praktikabler Lösungen zur Aufwertung von Abwärmeströmen zur Verarbeitung von Wärmeströmen bei höheren Temperaturen bis zu 160° C
- Schlüsselelemente der Lösungen sind drei fortschrittliche Hochtemperatur-Dampfkompressionswärmepumpen
 - zwei geschlossene Wärmepumpen für Lufttrocknungsprozesse
 - eine Open-Loop-Wärmepumpe für dampfbetriebene Trocknungsprozesse

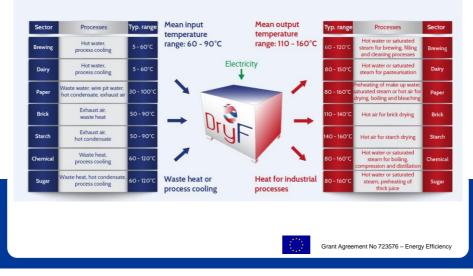
54

Innovation: Modifizierter Schraubenkompressor


- modifizierter halbhermetischer Schraubenkompressor auf Basis der bewährten HS-Serie von Bitzer
- für Sauggastemperaturen bis 100° C und Heißgastempera-turen bis 160° C
- Zweiwellen-Rotationsverdichterbauweise mit hocheffizienter Geometrie
- 300 m³/h- Fördervolumen bei 60 Hz Betriebsfrequenz
- Optimiert f
 ür parallelen Betrieb mit bis zu 6 Kompressoren

Grant Agreement No 723576 - Energy Efficiency

<image><section-header><section-header><section-header><complex-block><complex-block><complex-block>



Industriesektoren, auf die DryFiciency abzielt

62

Anwendungsfälle für DryFiciency Wärmepumpen

Ziegeltrocknung @Wienerberger AG

Projekt-Kontakte

Koordination:

Dr. Veronika Wilk veronika.wilk@ait.ac.at

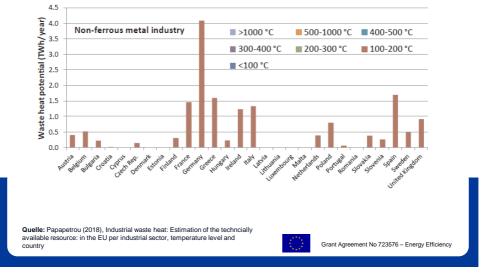
Training: Dr. Michael Lauermann michael.lauermann@ait.ac.at

Center for Energy Sustainable Thermal Energy Systems **AIT Austrian Institute of Technology GmbH** Giefinggasse 2, 1210 Vienna, Austria T +43 50550 - 6494 M +43 664 88390018 http://www.ait.ac.at

Kontakt:

Schreiben Sie uns: dryficiency@ait.ac.at

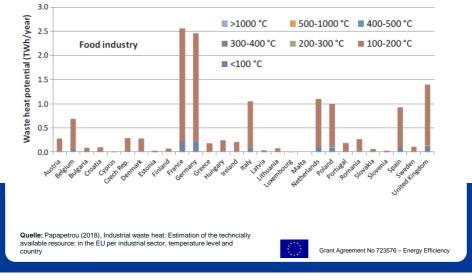
Besuchen Sie <u>www.dryficiency.eu</u> und melden Sie sich für unseren **Newsletter** an, um auf dem Laufenden zu bleiben.


> Folgen Sie uns auf LinkedIn und Twitter:

Abwärmepotenzial: NE-Metalle (2015)

70

Abwärmepotenzial: Chemische Industrie (2015)

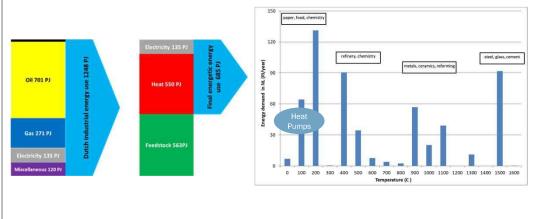

Abwärmepotenzial: Zellstoff- & Papierindustrie (2015)

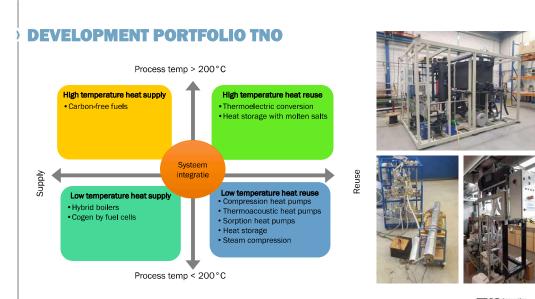
72

Abwärmepotenzial: Lebensmittelindustrie (2015)

5.3 Presentations from online seminars and final conference

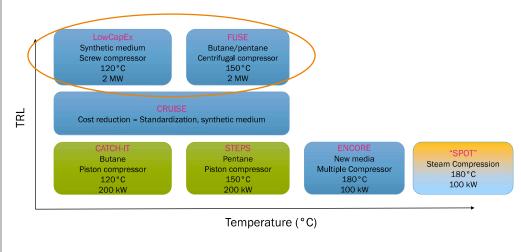
Industrial heat pumps for a greener European industry: February 23rd, 2021 Waste heat solutions for Europe's green recovery: March 19th, 2021 High temperature heat pumps in energy intensive industries: core components: April 7th, 2021 High temperature heat pumps in energy intensive industries: demonstration plants: April 21st, 2021 Final conference: June 6th, 2021 Online seminars for industrial end-users, policy makers, energy managers & consultants




'INNOVATION FOR LIFE'

TNO CONNECTS PEOPLE AND KNOWLEDGE TO CREATE INNOVATIONS THAT BOOST THE COMPETITIVE STRENGTH OF INDUSTRY AND THE WELL-BEING OF SOCIETY IN A SUSTAINABLE WAY. THIS IS OUR MISSION AND IT IS WHAT DRIVES US, THE OVER 3,400 PROFESSIONALS AT TNO, IN OUR WORK EVERY DAY!

BACKGROUND ON INDUSTRIAL HEAT ENERGY USE IN THE NETHERLANDS



TNO innovation for life

TNO innovation for life

COMPRESSION HEAT PUMP DEVELOPMENT @ TNO

TNO innovation for life

COMPRESSION HEAT PUMPS LOW CAPEX PROJECT

TECHNICAL

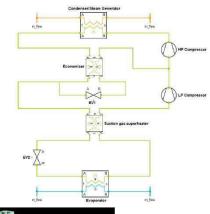
-) Steam production @120°C at 2MW scale
-) Synthetic working fluid HFO
-) Two compressors
- > Parallel construction of the high pressure side
-) Shared evaporator
-) Potential for further lowering capex
-) Step towards industrial demonstrations

FOLLOW-UP

) Demonstration in Paper mille (Smurfit Kappa)

COMPRESSION HEAT PUMPS FUSE PROJECT

TECHNICAL


-) Steam production @150°C at 2MW scale
- Natural working fluid Pentane
-) Using waste heat 60°C-90°C
-) Aim for investment cost < 200 €/kWth (excluding integration)

CHALLENGE

) Finding a suitable compressor

FOLLOW-UP

) Demonstration at DOW chemical

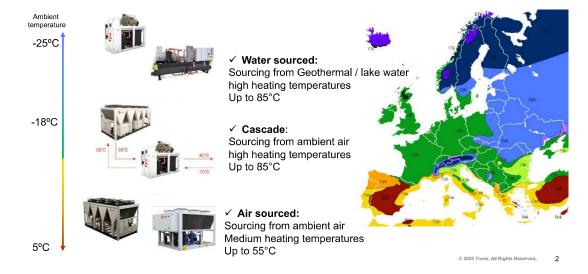
TNO innovation for life

CARNOT LAB TECHNOLOGY DEVELOPMENT

) New lab facilities in the Netherlands: Petten

-) Contains general infrastructure for testing small scale to large scale heating equipment; 1 kW to 2 MW
- HP testing 200 kW, 10 bar steam
- > Full scale HP 2 MW, 10 bar steam)
- Use of flammable working media
-) 1 MW Electrical connection
-) Humid air (100°C)
-) Hot air loop (1000°C)
- General heating and cooling

WHAT IS NEEDED FOR FURTHER INNOVATION? WHITE PAPER


Using heat pumps to re-purpose industrial process waste energy

Case study

Erik Van Oossanen, Applied Portfolio Leader - Trane Europe

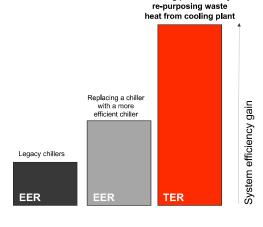
30 September 2020

Heating solutions in Europe, sourcing from nature

HEAT Recovery, sourcing from waste *TER: Total Efficiency Ratio 80kW Cooling and 100kW heating 80kW Cooling and 100kW heating 80kW Cooling and 100kW heating 100kW "0" kW 100kW 100kW Connected Disconnected 100kW Cooling heating and and cooling Efficient Heating cooling 20kW 30kW sconnecte 80kW rom heating 20kW Conventional approach "Free Cooling" approach Heat Recovery approach $TER^* = \frac{100+80}{100+20} = 1.5$ $TER^* = \frac{100+80}{100} = 1.8$ $TER^* = \frac{100+80}{20} = 9$ 600% efficiency gain by connecting heating and cooling! 3

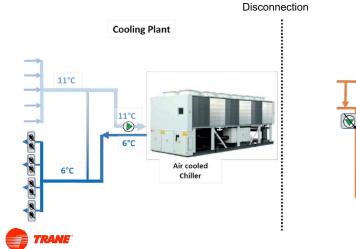
A Real Life example Water-to-water Heat Pumps with Heat Recovery – Industrial application

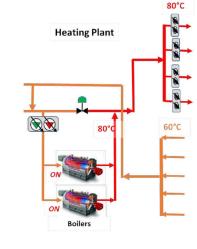
Animal health products factory – France


- A global company focusing on R&D and manufacturing of animal health products
- Annual turnover of almost 1 billion dollars
- Several production sites spread across 10 countries
- Committed to **optimizing the resources they use** with continuous monitoring of energy consumption, water and materials used in their manufacturing processes.

The Challenge and current status

- One of their keys objectives is to reduce energy (smaller carbon footprint) and gas consumption (lower emissions)
- Traditionally, replacing old equipment with a more efficient equivalent unit was considered as the best option.
- The company partnered with Trane to identify innovative solutions, starting with a production site located in the south of France
- Proposed solution: connecting the cooling and heating processes to <u>recover the heat</u> from the chiller plant and reuse it for heating in their production process.

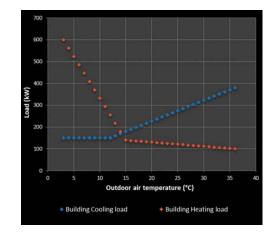



© 2020 Trane. All Rights Reserved. 5

Combining heating and cooling processes by

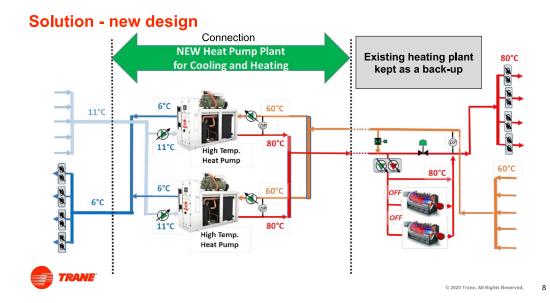
Solution - Original design

© 2020 Trane, All Rights Reserved. 6

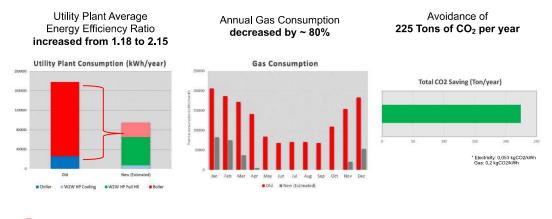

Demand profiles

Cooling requirements:

- Water Temperatures: 6/11°C
- · Loads:
 - Manufacturing process
 - Storage (Finished good + raw material)
 - · Air conditioning for labs and office


Heating requirements:

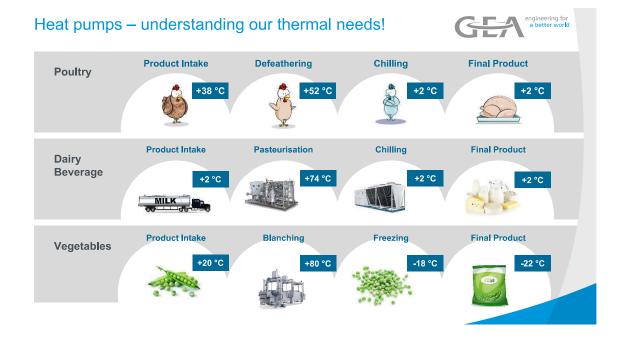
- Water Temperature : 80/60°C
- · Loads:
 - Manufacturing process
 - Space heating

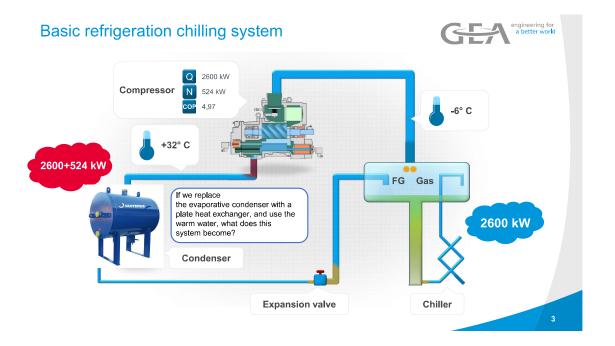


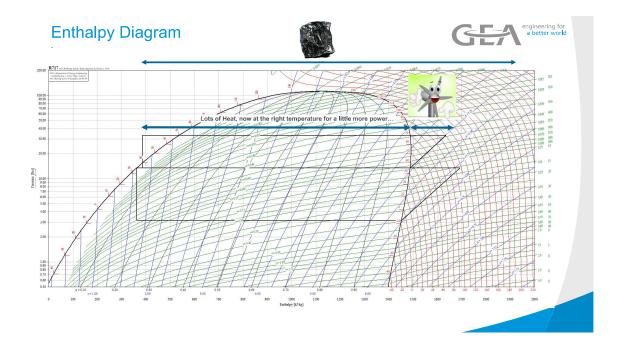
TRANE

© 2020 Trane. All Rights Reserved. 7

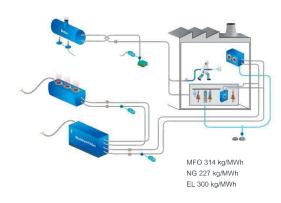
Results – Estimated savings


© 2020 Trane. All Rights Reserved. 9





© 2020 Trane. All rights reserved.

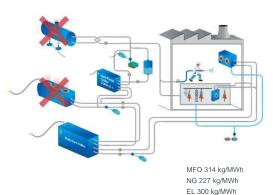


Heating / cooling in traditional poultry plant - 2 million birds per week

Heating Cost (7 day/week)

1,518 kW x 20 hr x 365 d/year = 11 million kWh/year energy (fuel) used

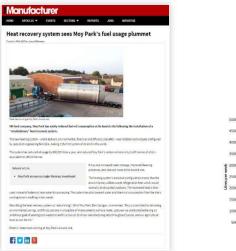
Refrigeration Cost (7 day/week)


(495 + 24 + 82 kW) x 18 hr x 339 d/year = 3.95 million kWh energy (electricity) used

Total

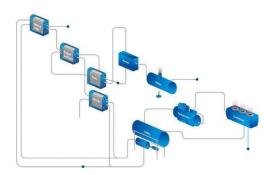
2,720 tonnes CO₂

Energy = 14.95 million kWh/year CO₂ Emissions = 4,160 tonnes/year


Heating / cooling using Heat Pump – 2 million birds per week

Cococ Coco C

Realized Moy Park poultry factory savings



Heating/Cooling in traditional dairy plant

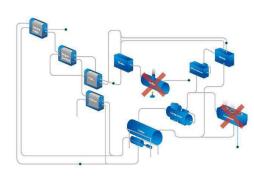
9.5 million ltr/wk Fresh Milk

Heating Cost

72,000 kWh/wk Natural Gas (7 day/week) x 52 = 3.74 million kWh/year energy (fuel) used

Refrigeration Cost

14,280 kWh/wk (7 day/week) x 52 = 0.74 million kWh energy (electricity) used


Water used

407 m³/wk (7 day/wk) x 52 = 21k m³/year

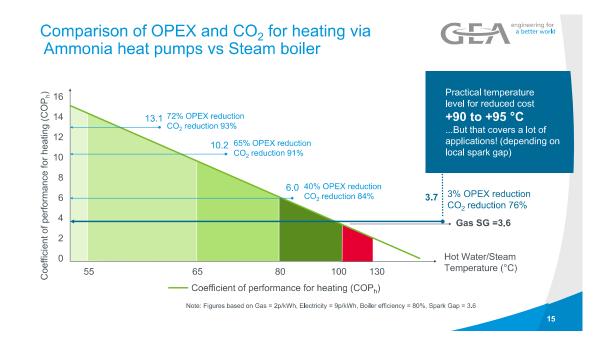
Total Energy = 4.48 million kWh/year <u>CO₂ Emissions = 970 tonnes/year</u> |

Heating/Cooling in dairy plant with Heat Pump

9.5 million ltr/wk Fresh Milk

Heating Cost6,440 kWh/wk (7 day/week) x 52= 0.33 million kWh/year energy (electricity) usedRefrigeration Cost14,280 kWh/wk (7 day/week) x 52= 0.74 million kWh energy (electricity) usedWater used242 m³/wk (7 day/wk) x 52= 12.5k m³/yearTotalEnergy = 1.07 million kWh/year CO_2 Emissions = 321 tonnes/yearAnnual Savings:3.41 million kWh energy649 tonnes CO_2

Carbon-neutral smoothie manufacturing site



The innocent way

400 million bottles per year Zero carbon emission production Unique GEA process and utility configuration 2.5 MW Heat pump @ 90°C 5 MW heat pump @ 65°C

Technology for a better

EHPA Heat pumps: No-way or Norway?

Michael Bantle Senior Researcher SINTEF Energy Research

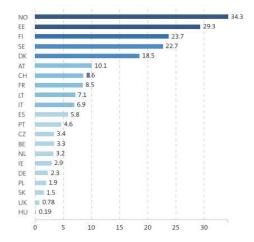
Michael Bantle (PhD)

POSITION Se KEY QUALIFICATIONS He

CONTACT

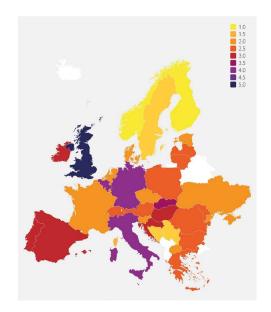
Senior Research Scientist Heat Pumps, High Temperature Heat pumps, Natural Refrigerant , Thermal process engineering, Drying Technology, Food Technology, Food properties and quality, <u>Michael.Bantle@sintef.no;</u> +47 41014024

since 2012	SINTEF Energy Research, Department Thermal Energy
2011 – 2012	Post-Doc at NTNU, Energy efficiency in drying processes
2007 – 2011	PhD at NTNU, Study of high intensity, airborne ultrasound in atmospheric freeze drying.
2002 – 2007	University of applied science, Konstanz Germany, Process and Environmental
	engineering, Diploma thesis: Dimensioning of drying and conditioning unit for soybeans.



Heat pump sales per 1000 inhabitants (2017)

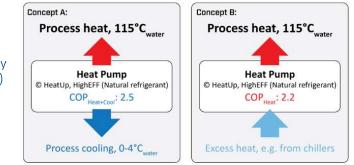
- High market acceptance of heat pumps in Scandinavia
- Several Start-Up companies for HTHP
- Heat pumps "standard" solution for building heating (and cooling)


Heat pump sales 2017 per 1000 inhabitants (Figure 4-9 from EHPA's European Heat Pump Markets and Statistics Report 2018)

Technology for a better society

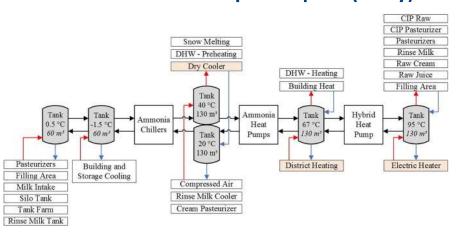
SINTEF Energy price ratio

- → Price difference per kWh electricity vs. fossil fuel
- De-carbonized future requires increased used of (renewable) electricity
- Electricity is in many European countries more expensive than fossil fuel

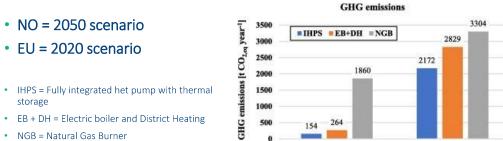


SINTEF Industrial Heat Pump Examples (Dairy)

- Combined heating and cooling
- Tested on TRL 6


 \bigcirc

- Integrated on TRL8 in dairy production (5 GWh / year)
- Need for thermal storage to match time-depending heat sink and source demand


Technology for a better society

٢ SINTEF

Industrial Heat Pump Examples (Dairy)

• NGB = Natural Gas Burner

https://www.sciencedirect.com/science/article/pii/S1359431121001861

Technology for a better society

\bigcirc Industrial High Temperature Heat Pumps SINTEF

• 1.5 – 5 MW heat pump

NO

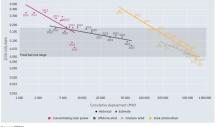
EU

- Supply of process heat 150 °C -180°C
- R718 (water) as refrigerant
- Two-phase compressor technology (patent ToCircle Industries)

Support by the European Union

This project has received funding from the European Union's Horizon 2020 research and ovation - SME Instrument programme der grant agreement No 805689

We are on the edge of an **ELECTRIFICATION ERA** Is **INDUSTRY** prepared?

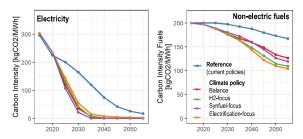

Dr Silvia Madeddu 23.02.2021 PIK – Potsdam Institute for Climate Impact Research <u>madeddu@pik-potsdam.de</u> <u>https://twitter.com/MadedduSilvia</u>

The ongoing **RENEWABLES TRANSITION** shows that **ELECTRICITY** is easier and faster to decarbonise than non-electric fuels

0%	
10%	Renewables Fossil fuels
	Total Indea
10%	
	 • Wind and sol
10%	• Wind and sol
10%	• Wind and sol
10%	* Wind and sol
10%	* Wind and se

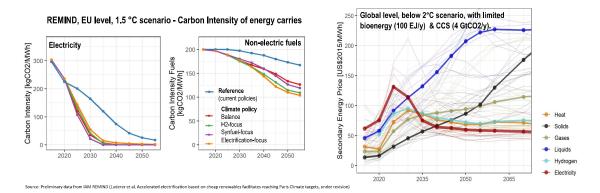
In 2020, for the fist time, renewables overtook fossil fuels in the generation of electricity in Europe (38%)

Sources: Agora Energiewende and Ember (2021): The European Power Sector in 2020: Up-to-Date Analysis on the Electricity Transition (left image) IRENA (2020), Renewable Power Generation Costs in 2019, International Renewable Energy Agency, Abu Dhabi, (right image)

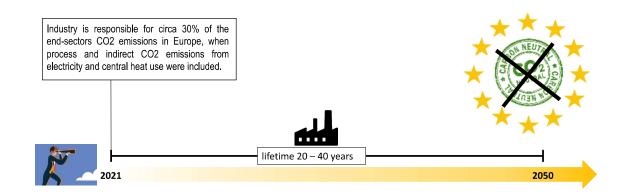


ce: IRENA. 1: The LCOE and auction price data

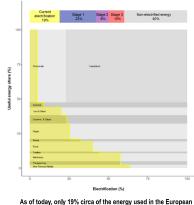
Renewables are becoming increasingly cost competitive with fossil fuels (in some countries they are already cheaper!)


The ongoing **RENEWABLES TRANSITION** shows that **ELECTRICITY** is easier and faster to decarbonise than non-electric fuels

REMIND, EU level, 1.5 °C scenario - Carbon Intensity of energy carries


Source: Preliminary data from IAM REMIND (Luderer et al, Accelerated electrification based on cheap renewables facilitates reaching Paris Climate targets, under revision)

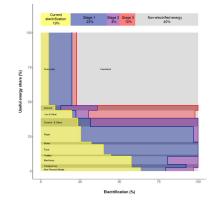
The ongoing **RENEWABLES TRANSITION** shows that **ELECTRICITY** is easier and faster to decarbonise than non-electric fuels


Investments in **CARBON-INTENSIVE** technologies for **INDUSTRY** will **JEOPARDISE THE EU GREEN DEAL**

Investments in **CARBON-INTENSIVE** technologies for **INDUSTRY** will **JEOPARDISE THE EU GREEN DEAL**

The **RENEWABLES TRANSITION** requires an adequate **TECHNOLOGICAL TRANSITION** in **INDUSTRY**

The **RENEWABLES TRANSITION** requires an adequate **TECHNOLOGICAL TRANSITION** in **INDUSTRY**


<100°C 100-400°C 400-1000°C >1000	C TECHNOLOGICAL MATURITY	APPLICATIONS	EFFICIENC /COP
Compression heat pumps and chillers	Established in industry (only <100 °C)	Space heating Hot water Low pressure steam Drying Cooling and refrigeration	COP 2 - 5
Mechanical vapour recompression (M VR)	Established in industry	Energy recovery (e.g. in distillation, evaporation) to provide steam and process heat	COP 3 - 10
Electric boilers	Estabilished in industry	Space heating Hot water Thermal oil Steam	0.95 - 0.99
Infrared heaters	Established in industry	Drying Paint curing Plastic treatments Food processing	0.60 - 0.90
Microwave & radio frequency heaters	Established in industry except cement and ceramic firing/sintering	Drying Ceramics firing and sintering Cement treatment Food processing	0.50 - 0.85
Induction furnace	Established in industry	Metals melting, re-heating, annealing, welcing	0.50 - 0.90
Resistance furnace	Established in industry	Metals melting, smelting Heaters for the chemical industry Ceramic firing Glass melting Calcination	0.50-0.95
Electric arc furnaces	Established in industry	Metals melting and partial refining	0.60 - 0.90
Plasma technology	Established in industry only for metals and waste treatment	Waste treatment Metals treatments (e.g. welding) Sintering Coment production	0.50 - 0.90

industry is supplied by electricity (circa 25% at final energy level)

Mature and efficient technologies already exist that could be readily implemented to electrify industry

From Madeddu et al., The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat), Env. Res. Letters, 15, 2020, https://doi.org/10.1088/1748-9326/abb002

The **RENEWABLES TRANSITION** requires an adequate **TECHNOLOGICAL TRANSITION** in **INDUSTRY**

- 78% of the energy demand (excluding feedstocks) is electrifiable with technologies that are already established.
- 99% electrification can be achieved with the addition of technologies currently under development.
- Such a deep electrification could reduce the industry energy consumption by 20%
- Such a deep electrification reduces CO2 emissions already based on the carbon intensity of today's electricity (~300 gCO2 kWhel-1).
- With an increasing decarbonisation of the power sector (12 gCO2 kWhel-1 in 2050), electrification could cut CO2 emissions by 78%, and almost entirely abate the energy-related CO2 emissions, reducing the industry bottleneck to only residual process emissions.

From Madeddu et al., The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat), Env. Res. Letters, 15, 2020, https://doi.org/10.1088/1748-9328/abbdC

INDUSTRY ELECTRIFICATION can be fostered by creating a level plain field in the energy market and a **COMPETITIVE ELECTRICITY PRICE**

INDUSTRY ELECTRIFICATION can be fostered by creating a level plain field in the energy market and a **COMPETITIVE ELECTRICITY PRICE**

- Industry investments in electrification, not only monetary but also for the acquisition of technical expertise will stall until a clear scenario is presented where electricity is going to be cost-competitive.
- Economic incentives and appropriate policies are needed to support industry transformation:
 - Reduction of electricity taxation and levies to create a level playing field across energy carriers and a competitive electricity price.
 - o Carbon pricing system.
 - o Stop subsidies for fossil-based technologies

Electricity/gas price ratio in Europe

THANK YOU!

PROCESS DECARBONIZATION: DRYFICIENCY AND BEYOND...

V. Wilk, F. Helminger, M. Lauermann, B. Windholz, A. Sporr, A. Beck, G. Drexler-Schmid, T. Fleckl

DRYFICIENCY: INDUSTRIAL DEMONSTRATION

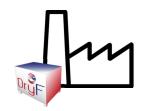
- Upgrading idle waste heat streams to process heat streams up to 160°C
- Key elements of the solution are three advanced high temperature vapour compression heat pumps
 - » two **closed loop heat pumps** for air drying processes
 - » one open loop heat pump for steam driven drying processes

DRYFICIENCY: INDUSTRIAL DEMONSTRATION

Challenges and research questions

- component design
 - compressors
 - Iubricant and refrigerant
- prototype design
 - integration in industrial process
 - design of refrigerant cycle
 - process control and monitoring
- commissioning and demonstration

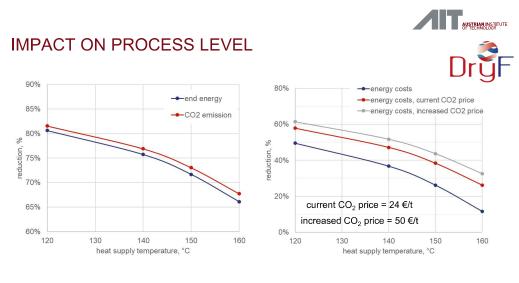
AUSTRIAN INSTITUTE


22.02.2021

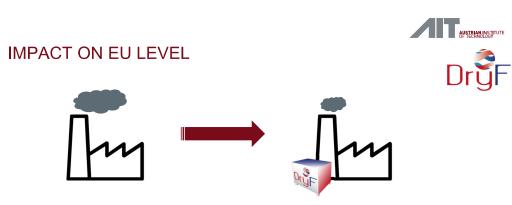
TECHNO-ECONOMIC ASSESSMENT

Comparison of the heat pump to a natural gas burner

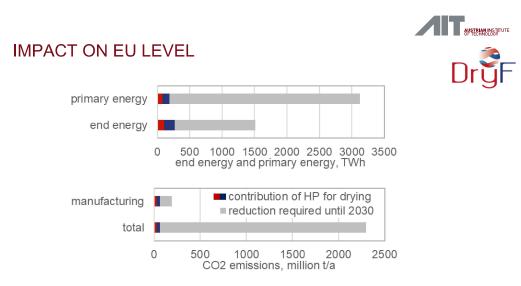
 CO_2 emissions: 271 g/kWh Gas price: 33 €/kWh ...with current CO_2 price: 39.5 €/kWh ...with increased CO_2 price: 46.6 €/kWh



CO₂ emissions: 258 g/kWh Electricity price: 86 €/kWh ... with current CO₂ price: 86 €/kWh ... with increased CO₂ price: 92.7 €/kWh


22.02.2021

V. Wilk et al. High temperature heat pumps for industrial processes – application and potential; ECEEE Industrial Summer Study Proceedings, 4-132-20, 2020, p.329-334. 3


AUSTRIAN INSTITUTE

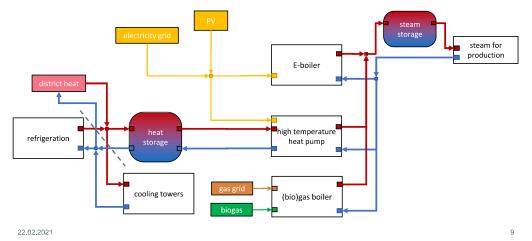
22.02.2021 V. Wilk et al. High temperature heat pumps for industrial processes – application and potential; 5 ECEEE Industrial Summer Study Proceedings, 4-132-20, 2020, p.329-334.

- assume that 50% of all drying processes are equipped with a heat pump
- replacement of natural gas burners
- drying accounts for 10-25% of the total industrial energy use in most developed countries: 321 803 TWh energy consumption

Wilk et al. (2019) Decarbonization of industrial processes with heat pumps, ICR Conference 2019, DOI: 10.18462/iir.icr.2019.832

PROCESS INTEGRATION

- electrification of processes for decarbonization
- efficiency increase
- evaluation of sources and sinks
- determination of actual energy demand
- interconnection of streams



AUSTRIAN INSTITUTE

Energy intensive industries producing considerable excess heat From: Connolly et al. (2013). Heat Roadmap Europe 2: Second Pre-Study for the EU27. Department of Development and Planning, Alaborg University.

HOW TO INTEGRATE A HEAT PUMP?

HOW TO DECARBONIZE INDUSTRIAL PROCESSES?

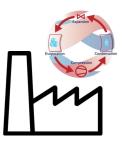
Optimization of industrial sites:

- interaction of multiple heat suppliers, storages and consumers
- · different options for decarbonization: avoid lock-in effects
- design and operation optimization

Method development:

- analysis of decarbonisation pathways
- mathematical programming: complex and dynamic systems, discontinuous processes
- · dynamic simulations: interaction of heat pump and process

INDUSTRIAL HEAT PUMPS


Expectations of industrial end users

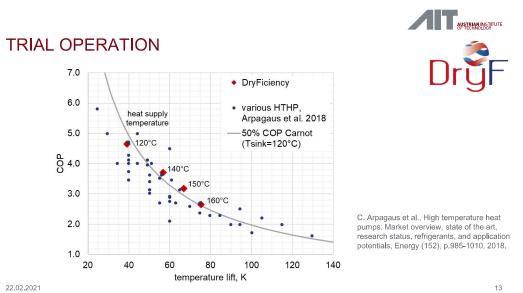
- high availability and reliability, short payback periods
- drivers: increase in efficiency and reduction of CO2 emissions
- · complex industrial processes require intelligent solutions for waste heat recovery

Demonstration projects for new developments

- establish trust in new technologies
- relevant industrial environment

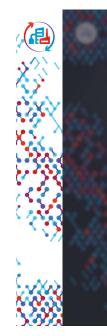
22.02.2021

11



THANK YOU!

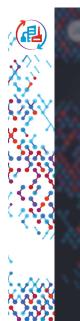
//////


Dr. Veronika Wilk

Why?

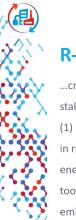
European Industry energy demand 25% Only 16% comes from renewables We need to save energy!

Energy Cooperation as a Solution



Industrial sites & business parks play a key role in the energy transition.

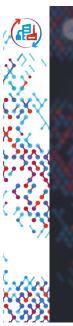
They have the potential to become hubs of energy flows for the entire region around them.



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 892429

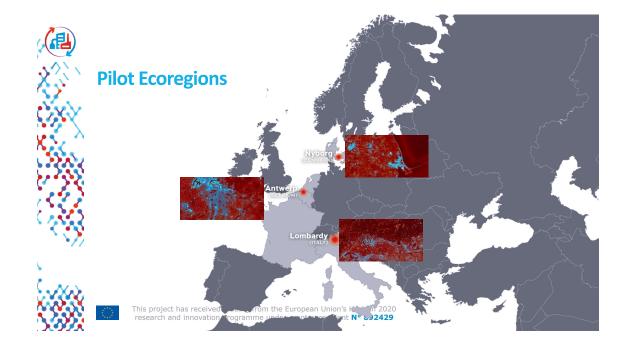
Vision of R-ACES

R-ACES supports industrial sites & business parks in becoming ecoregions that reduce their CO_2 emissions by at least 10%.

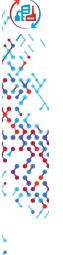


R-ACES...

...creates ecoregions where multiple stakeholders engage in energy cooperation by (1) exchanging heat/cold streams, (2) investing in renewable energy solutions, or (3) managing energy streams with the use of the R-ACES toolbox that is aimed at reducing CO2 emissions by at least 10%.



Ecoregion


Multiple organisations cooperate in an ecoregion to establish energy cooperation. Regions consist of an industrial park or business park linked to its surroundings by energy cooperation activities.

An ecoregion relies on an anchor organisation responsible for managing the area. The proximity of stakeholders ensure the interconnected energy flows.

R-ACES Tools

... to support the entire process of organising an ecoregion & the collaboration inside of it.

3 Practical Tools

... are the structuring element of the project. The tools are action oriented & **support ecoregions** to **implement** their **energy cooperation** projects.

The self-assessment tool helps to identify potential energy projects in a region. It provides best practices & check lists to users to help them to kick-off the process.

The **legal decision support tool** to help drawing up contracts that need to be signed between participants.

The energy management platform is the key to running, settling, and optimising the energy exchanges between companies.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement **N° 892429**

How to become an Ecoregion?

Join us by sharing your commitment to the R-ACES energy cooperation principles

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement $N^{\circ}~892429$

R-ACES creates maximum impact

> Work on a better deal for Europe's **clean**

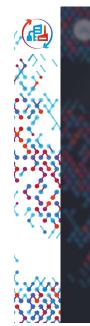
energy future

- > Energy cooperation reduces CO2-emissions
- Regional energy cooperation creates

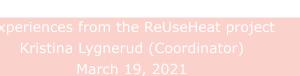
maximum impact

Yes, we believe in energy cooperation

Sustainable district heating based on industrial surplus heat READ THE PLEDGE »


Share your commitment

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 892429


R-ACES Training

R-ACES creates an online education environment with links to available training materials to support capacity building of stakeholders.

Waste heat solutions for Europe's green recovery

This project has received funding from the Europea Union's Horizon 2020 research and innovation programme under grant ageement No 767429

www.reuseheat.eu

@ReUseHeat

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

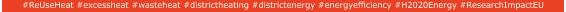
ReUseHeat project

Agenda

- ReUseHeat overview
- Urban waste heat potential
- Learnings to date

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

OVERVIEW


#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

The ReUseHeat -overview

Objective: Demonstrate first-of-their-kind, advanced, modular and replicable systems enabling the recovery

ReUseHeat project- overview

Short facts

- Partners from 9 countries
- Academia, Industry and Associations
- H2020 (Innovation action- focusing on system innovations)
- Estimated project cost €4,883,672
- 60 months
- 4 system innovations

BS ENERGY

TRACTEBEL

DANISH DISTRICT HEATING ASSOCIATION

TECNOLOGICO] CARTIF

THE LONDON SCHOOL

POLITICAL SCIENCE

etrou

CEEE S C EUROHEAT Naturgy →

www.reuseheat.eu

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

ReUseHeat project- overview

Expected results Useful insight for future investors through:

- Urban waste heat **potential** identification EU28
- Efficient technologies and solutions (4 demosites)
- Suitable business models and contractual arrangements
- Estimation of investment risk and bankability and

impact of urban waste heat recovery investments

www,reuseheat,eu

@ReUseHeat

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

ReUseHeat project- urban waste heat potential

Approximately **1.2 EJ** (or 340 TWh) per year are possible to recover from data centres, metro stations, service sector buildings, and waste water treatment plants.

This corresponds to more than 10 percent of the EU's total energy demand for heat and hot water, which is approximately 10.7 EJ (or 2,980 TWh)*

*ReUseHeat D1.4, Halmstad University, Urban Persson

www,reuseheat.eu

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

ReUseHeat project- Learnings to date: Contracts/ Business Model

- Existing incentives for RES and CHP
- Absence of legal framework for urban waste heat recovery
- Low technical maturity of building system solutions of HP and low temp source
- Long payback periods
- Absence of standardized contracts
- Diverging views on the value of waste heat

ReUseHeat project- Learnings to date

- Computer center heat recovery (Germany)
- Close customer dialogue needed for understanding each others' processes
- Datacenters ramp up gradually (heat is provided with increasing volumes over time)
- For future cases, it might be considered to offer cooling services to data cente rather than to purchase the waste heat

www.reuseheat.eu

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

ReUseHeat project- Learnings to date

- Metro system heat recovery (Germany)
- It is difficult to match the heat source with heat demand
- There is strict safety regulation in the metro tunnel constraining the installation that can be made (maintenance free)
- The access to the site is restricted to a limited number of hours each night (when the trains standstill)
- The air in the tunnels is charged with metal dust which impacts the heat pump design

ReUseHeat project- Learnings to date

- Hospital heat recovery (Spain)
- Long term energy service contract facilitates the operations
- The hospital has its own, local network over which it has control
- The hospital sector was challenged during the pandemic: making access difficult

#ReUseHeat #excessheat #wasteheat #districtheating #districtenergy #energyefficiency #H2020Energy #ResearchImpactEU

ReUseHeat project- Learnings to date

- End-user engagement through visualization of sea
 - and sewage water heat recovery (France)
- the data available from substations in a DHN are not suited for visualization purposes (need to clean up data, install new substations and other)
- the end-user demand is not yet in place: it is uncertain that visualized energy performance data is in demand
- dashboard can be placed on any DHN

ReUseHeat

This Photo by Unknown Author is licensed under CC BY-NC-ND

www.reuseheat.eu

Low-Temperature Waste Heat Recovery in District Heating and Cooling Networks

Waste Heat solutions for Europe's green recovery, 19.03.2021 Roberto Fedrizzi, EURAC Research

Background

- 72% of the European population (EU28) lives in cities and towns
- A huge amount of low-grade <u>waste heat is diffused</u> <u>within the urban texture</u>, the largest amount being rejected by air-conditioners, cooling systems in industrial processes and tertiary buildings, chillers of refrigeration systems and service facilities, e.g. sewer pipes
- For historic reasons, cities and towns have born along rivers, lakes and seashores. All these sources make <u>low-temperature renewable energy available</u>, which utilisation is highly replicable because it is accessible right where it is needed

Source: Ricardo Gomez Angel on Unspl

The Vision

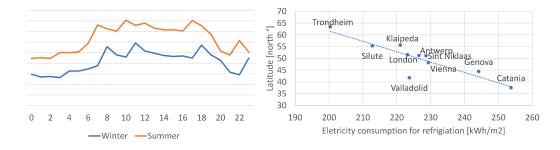
- The overall objective of REWARDHeat is to demonstrate district heating and cooling (DHC) networks, which are able to recover renewable and waste heat available at low temperature, i.e. lower than 40°C
- Focus is on the exploitation of the energy sources available within the urban context, allowing to maximize the upscale potential of the decentralized solutions developed
- To do this, <u>we need to lower the supply temperature</u> <u>compared to conventional networks</u>. Focus on supply temperature lower than 60 °C and down to 10-20°C.

Specific Objectives

e: Kellv Sikkema on Unsplas

TO INTEGRATE MULTIPLE URBAN RENEWABLE AND WASTE ENERGY SOURCES

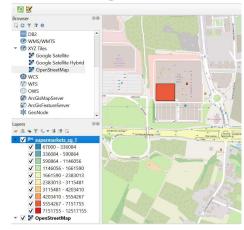
REWARDHeat explores configurations of a DHC network, providing tools and recommendations for the integration of multiple renewable and waste heat sources


- Planning schemes database
- Pre-design tool
- Informational material for publication in wiki-tools
- Guidebook for planners
- Serious gaming

To integrate multiple waste energy sources

Starting from publicly available data

• Hourly electricity consumption for refrigeration (for reference days)

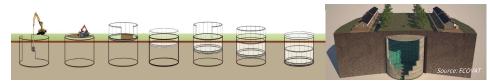


To integrate multiple waste energy sources

To total yearly potential "educated guess"

- According to the specific yearly electricity consumption + equivalent COP of the system
 > specific yearly waste heat
- Combined with Open Street Maps
 → location and area of waste heat generation

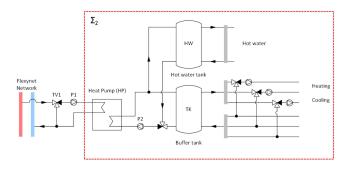
Specific Objectives



TO DEVELOP INNOVATIVE TECHNOLOGIES FOR FLEXIBLE USE OF HEAT IN DHC NETWORKS

Substations - Two approaches are pursued: prefabrication for building solutions and standardisation for large-scale district heating plants

Thermal storages

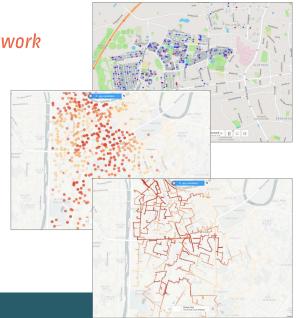

- Local, intra-day storages at customer substations
- Central, intra-day storages to balance the network and store energy during off-peak periods

To develop innovative technologies

Prefabricated bi-directional substations with heat pump and storages for installation in single buildings

Specific Objectives

TO DEMONSTRATE DIGITALISATION SOLUTIONS ALLOWING TO OPTIMISE THE MANAGEMENT OF THE DHC NETWORK


In REWARDHeat, storage capacity and control will be used synergically to manage the system.

- Smart metering communicating real-time
- Data-mining platform will permit to manage communication with smart meters and to handle controls
- Fault detection and expert control strategies elaboration for optimisation and electricity grid coupling

Digitalisation of the DHC network

- Data mining and user interfaces for assets' real-time monitoring
- Real-time performance analysis and KPIs calculation for wise management of the network
- Smart controls based on model-prediction of loads for next hours and days under elaboration

Specific Objectives

TO DEVELOP BUSINESS MODELS AND FINANCIAL SCHEMES ATTRACTING LARG

Private customers:

• Heat sold as a service

Waste Heat recovery - Barriers to overcome:

- Split between property owner and Waste Heat owner, hence split of interest
- Hard to calculate economic benefit for utility company due to risk of Waste Heat owner leaving and different financial cycles compared to industries and services
- RED and EED do not price Waste Heat as renewable energy and do not provide clear definitions and methods

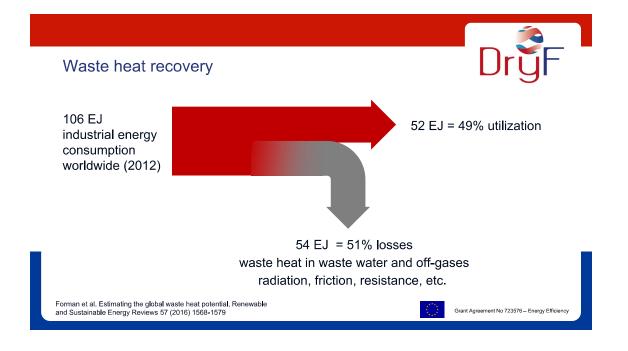
REWARDHeat demonstration networks

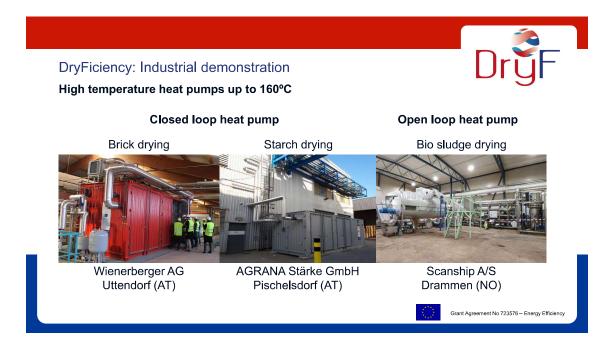
- 1 MILAN Newly built neutral-temperature networks
- 2 HAMBURG Newly built low-temperature network
- 3 **HELSINGBORG** Newly built low-temperature networks
- 4 MöLNDAL Newly built low-temperature networks
- 5 TOPUSKO Heat cascading in low-temperature network
- 6 TOULON Upscaled neutral-temperature network
- 7 **HEERLEN** Intra-day storage in neutral-temperature network
- 8 SZCZECIN Newly built neutral to low-temperature network

Roberto Fedrizzi, EURAC Research roberto.fedrizzi@eurac.edu

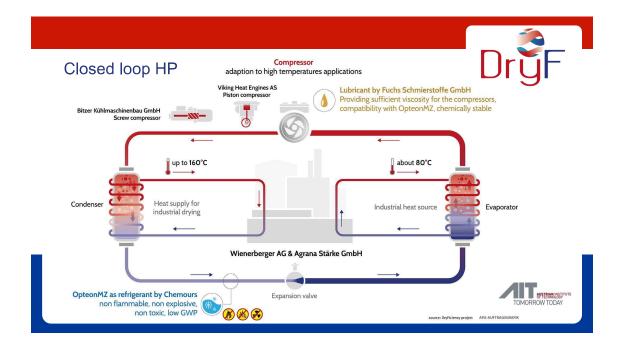
Thank you

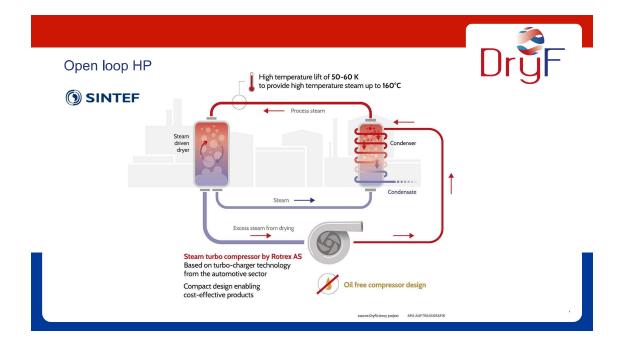
www.rewardheat.eu

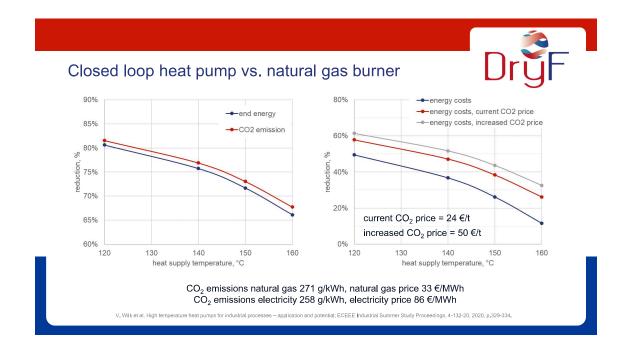

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 857811. The document reflects the author's view. The European Commission has no liability for any use that may be made of the information it contains.

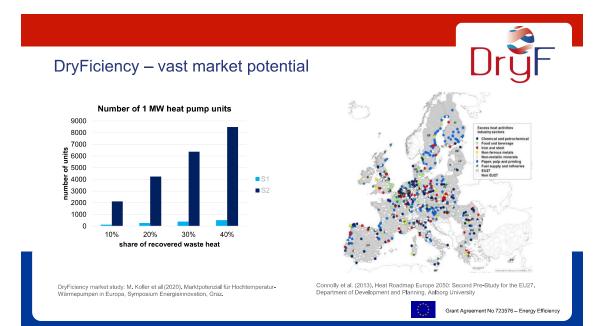



DryFiciency: high temperature heat pumps for drying


V. Wilk AIT Austrian Institute of Technology GmbH







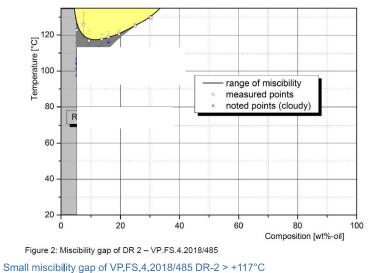
Online seminars for heat pump manufacturers and plant engineers

Lubricants for DR-2 – PAG

Task in the project:

Development of lubricants for high temperature heat pumps with DR-2 (= R1336mzz-Z) screw and reciprocating compressor

Condition:

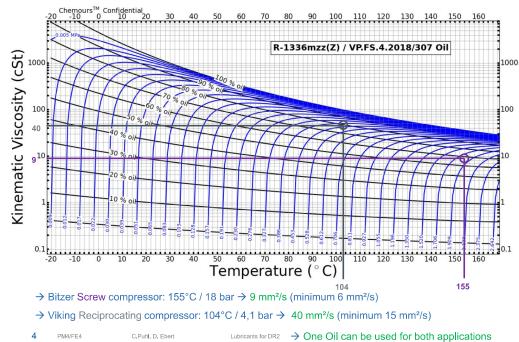

- High temperature and high pressure in the system
- \rightarrow Strong dilution by the working fluid + high temperature decreases the lubricant viscosity

PAG lubricant:

- Good miscibility with DR-2 at high viscosities
- Higher viscosity index compared to Ester, higher film strength at elevated temperature
- Good thermal stability with DR-2 with an optimized additive system

Miscibility PAG VG 600 with DR-2

 \rightarrow no problem as < 6 w% and > 33 w% lubricant with working fluid are miscible


3 PM4/FE4 C.Puhl, D. Ebert Lubricants for DR2

pVT Measurement of PAG VG 680 / DR-2

C.Puhl, D. Ebert

PM4/FE4

Sealed Tube Test / Ageing Stability Test Different PAG Lubricants / DR-2: Parameter

Optimizing and testing the thermal / chemical stability of DR-2 / refrigerant with different lubricants at Spauschus. Spauschus can measure the TAN of the oil and ion chromatography to determine refrigerant and lubricants decomposition.

Sealed Tube Test:

5

PM4/FE4

Heat pump lubricant: PAG Type Refrigerant: DR-2 Time: 336h Temperature: 175°C Metals: Fe + Cu + Al separated Lubricant amount: 2 ml Refrigerant amount: 2 ml Water content: < 350 ppm TAN before test: < 0,1 mg KOH/g Analysis after test -TAN after test -Ion Chromatography

Sealed Tube Test / Ageing Stability Test Different PAG Lubricants / DR-2: Results

C.Puhl, D. Ebert

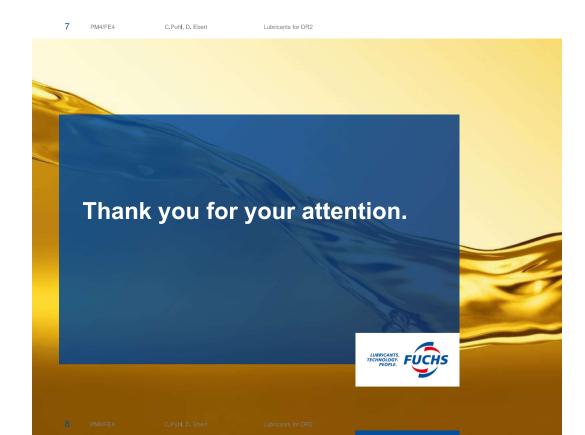
Lubricant	Visual Observations						
	Liquid	Metal coupons					
VP.FS.4.2018/53	Clear (same as unaged); color slightly darker (color=3.0 versus 2.0 for unaged); no deposit	All metals unchanged					
VP.FS.4.2018/55	Clear (same as unaged); color slightly darker (color=2.25 versus 2.0 for unaged); no deposit	All metals unchanged					
VP.FS.4.2018/195	Clear (same as unaged); color same as unaged (color=2.0); no deposit	All metals unchanged					
VP.FS.4.2018/196	Clear (same as unaged); color same as unaged (color=2.0); no deposit	All metals unchanged					
VP.FS.4.2018/197	Clear (same as unaged); color slightly darker (color=2.5 versus 2.0 for unaged); no deposit	All metals unchanged					
VP.FS.4.2018/198	Clear (same as unaged); color slightly darker (color=2.75 versus 2.0 for unaged); no deposit	All metals unchanged					

Lubricants for DR2

Table 2: TAN and IC Results of Sealed Tubes									
Lubricant	Total Acid Number mg KOH/g	Ion Chromstography Results, ppm							
		Fluoride	Propanoate	Pentanoate	Hexanoate	2-Ethyl- Hexanoate	Heptanoate	Total Organic Acid (TOA) ppm	•
53 before aging	0.02	0	4	0	6	21	0	31	
53 after aging	1.07	364	57	0	9	0	0	66	
55 before aging	0.05	0	2	0	34	1	0	37	
55 after aging	0.53	155	12	0	224	30	0	266	-
195 before aging	0.03	1	11	0	55	1	0	67	
195 after aging	0.79	140	9	0	201	0	77	287	Results:
196 before aging	0.05	1	10	0	66	1	0	77	Results.
196 after aging	0.39	106	7	0	358	0	0	365	VP.FS.4.2018/197 best
197 before aging	0.07	0	3	0	44	1	0	48	results in TAN and in
197 after aging	0.38	142	4	0	19	10	12	45	
198 before aging	0.08	0	6	1	33	0	0	40	<pre>creation of ions</pre>
198 after aging	0.56	195	10	0	10	5	2	27	-

6 PM4/FE4

```
E4 C.Puhl, D. Ebert
```


Final Product VP.FS.4.2018/485

Pro	VP.FS.4.2018/485		
T	PAG 600/2		
Additiv	197/2		
Measurement	Method	Value	
V40 [mm²/s]	DIN EN ISO 3104	598,0	
V100 [mm²/s]	DIN EN ISO 3104	94,5	
VI [-]	DIN ISO 2909	250	
TAN [mg KOH/g]	DIN 51558-1	0,01	
Pourpoint [°C]	DIN ISO 3016	-36	
Density 15°C [g/ml]	DIN 51757	0,997	
Flashpoint CoC [°C]	DIN ISO 2592	220	
Color [-]	DIN ISO 2049	0,5	

Performance lubricant with DR-2:

- Good miscibility \rightarrow safe oil transport and reliable heat transfer
- Good lubrication performance \rightarrow excellent wear protection for all compressor parts
- Good thermal / chemical stability → longterm stability of oil / refrigerant system

HFO-1336mzz(Z) – Opteon[™] MZ Low GWP refrigerant for High Temperature Heat Pump

April 1, 2021

Outline

e Opteon

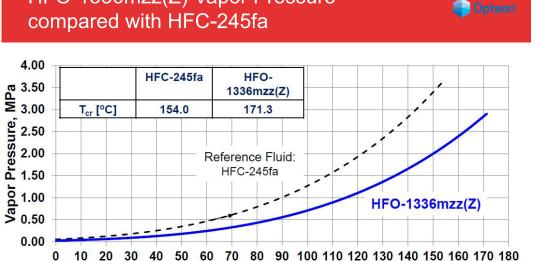
- INTRODUCTION
 - Regulatory drivers
 - Refrigerant Properties:
 - Thermo-Physical Properties and Thermodynamic Cycle Performance, COP_H and CAP_H comparison (30°C and 50°C uplift)
- COMPATIBILITY AND VISCOSITY STUDIES
 - · Elastomers and lubricants selection
 - Conclusions

F-Gas Regulation and Kigali amendment Transition to Low GWP

BASIC PROPERTIES

Chemical Name	HFO-1336mzz(Z)			
Chemical Formula	CF ₃ CH=CHCF ₃ (Z)			
OEL [ppm]	500			
Flammabilty	Non-Flam			
ODP	None			
GWP ₁₀₀	2			
T _{cr} [°C]	171.3			
P _{cr} [MPa]	2.90			
T _b [°C]	33.4			

HFO-1336mzz(Z) Opteon™ MZ



- R-1336mzz(Z) classified as A1 (low toxicity, No flammability)
- Very low GWP

Copteon

HFO-1336mzz(Z) Vapor Pressure

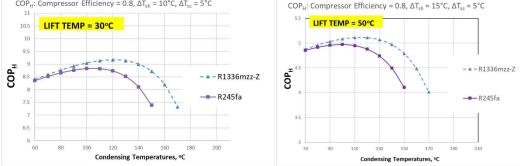
Temperature, °C

Set of properties now set in latest version of NIST Database (REFPROP)

4/1/2021 5

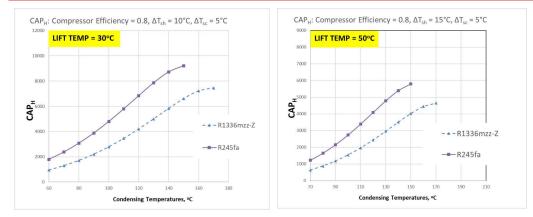
HFO-1336mzz(Z) High Temperature stability Copteon

High Chemical Stability up to at 250 C in the presence of air, moisture, carbon steel, copper and aluminum.


Visual inspections of the tubes and coupons after aging showed no liquid or metal discoloration, insoluble residues or other signs of degradation

HFO-1336mzz(Z) (Opteon[™] MZ) as stable as HFC-245fa

Test method ASHRAE-97 was applied (Sealed Glass Tube Method to Test the Chemical Stability of Materials for Use within Refrigerant Systems). Sealed glass tubes are prepared and charged with refrigerant, lubricant, other materials to be tested, or combinations of these. Tubes are exposed to elevated temperatures for two weeks to simulate aging

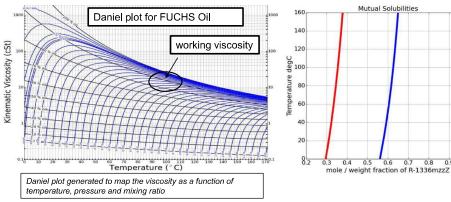

Theoretical Coefficient of Performance (COP)

- COP of the heat pump for an application envelope of 90 °C evaporation temperature and 160 °C condensation temperature could result in a good COP >3.5 but with some operating limits (Temp. lift)
- R1336mzz-Z exceeds other material alternative in application temperatures above 140oC

Theoretical Heating Capacity (CAP_H)

 R1336mzz-Z also has a very good CAPH which is approximately the same as R245fa, and still exceeds incumbent alternatives in application temperatures above 140oC

Chemours[™] PRESENTATION TITLE


Opteon

Lubricant Selection: Lubricity

- mole frac alpha - mole frac beta

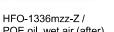
weight frac alphi weight frac beta

Viscosity of various lubricants (POE and PAG) evaluated compatibility with the refrigerant to determine whether they have enough viscosity at high temperature to lubricate the compressors

Miscibility of various lubricants (POE and PAG) evaluated thru vapour-liquidequilibrium (VLE) and liquid-liquidequilibrium (LLE) predictions and mutual solubility curves were calculated

0.9

4/1/2021 9


Copteon

Stability tests with refrigerant and **lubricants**

HFO-1336mzz-Z/ POE oil, dry air (after)

HFO-1336mzz-Z/ PAG oil, dry air (after)

HFO-1336mzz-Z/ POE oil, wet air (after) PAG oil, wet air (after)

- Visual observations: ٠ Before and after the ageing the test of the refrigerant and the lubricant
- Help to determine the • lubricant compatibility

Elastomers and other Compatibility

Weight and Hardness Changes tested with Various Elastomers and Plastics with HFO-1336mzz(Z) at 120°C with FUCHS POE Oil

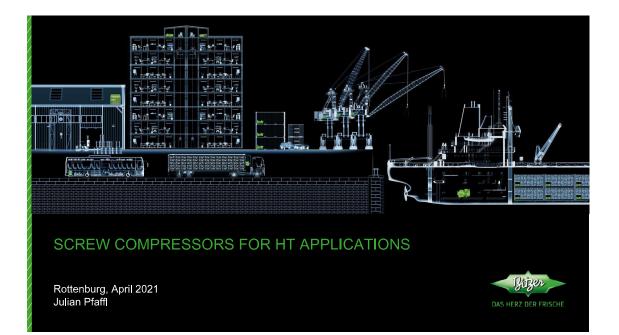
O ha O ha O ha Handa asa

			0 hr	0 hr	0 hr Hardness	
	EPDM E7131 +	0 hr	% Weight	% Linear	Change,	
Ela	astomers after 0 hrs	Rating	Change	Swell	Delta	EPDM exhibits good
	POE 211 + DR2	1	11	3	-7	_
	POE 211 + DR2	1	11	3	-6	resistance with HF)-
	POE 212 + DR2	1	12	4	-6	
	POE 212 + DR2	1	13	4	-7	1336mzz(Z)
					24 hr	
		24 hr	24 hr	24 hr	Hardness	
	EPDM E7131 + stomers after 24 hrs	2000 (CONTRA)	% Weight	% Linear Swell	Change, Delta	
Ela	POE 211 + DR2	Rating	Change 8		-5	
	POE 211 + DR2 POE 211 + DR2	0	8	2	-5	
	POE 212 + DR2	0	10	3	-5	
	POE 212 + DR2	0	10	2	-7	
	Before/ After	EPDM				
	nclusio	ns	*Cond	lucted in S	ealed Tube ⁻	Tests - ASHRAE Standard 97-2007

The HFO-1336mzz(Z) have all of the characteristics (Low GWP, Class A1 refrigerant, Excellent Chemical & Material Compatibility, High Critical Temperature, Exhibiting favorable toxicity profile) to be a viable working fluid in Waste Heat Recovery applications which include both high temperature heat pumps (and low temperature ORC applications).

The HFO-1336mzz(Z) allow higher condensing temperatures than R134a and have a lower GWP than R245fa. It could enable development of industrial high temperature heat pump for

- Drying / dehydration
- Process heating
- Food manufacturing industry


11

THANK YOU Questions?

for additional questions, contact: Loic.chereau@Chemours.com +41 22 719 1535

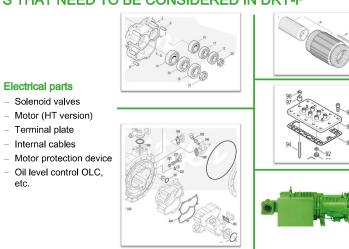
SCREW COMPRESSOR FOR HT APPLICATIONS SELECTION OF PARTS THAT NEED TO BE CONSIDERED IN DRY-F

// O-rings / gaskets / plastics

- Pressure relief valve
- Check valve
- Shut-off valves, etc.

// Mechanical parts

// Electrical parts Solenoid valves


> - Terminal plate Internal cables

> > etc.

- Bearings (HT version) Motor (HT version)
- Schrader valves
- Sight glass, etc.
- // **Oil**
- POE / PAO / PAG / Other ? Oil level control OLC,
- Daniel plots > +100°C?

// Painting "BITZER green"

- 2K-painting

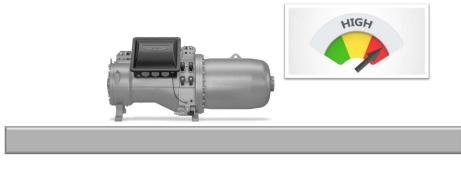
HIGH TEMPERATURE HEAT PUMP PRESENTATION // JULIAN PFAFFL

<u>CSH2T</u> NEW COMPRESSOR GENERATION FOR HT APPLICATIONS

// General features

SST max up to +75°C

- → max SGT up to +100°C (compressor inlet)
- \rightarrow max DGT up to +140°C (compressor outlet)
- Operates with HFO HT Refrigerants


3 HIGH TEMPERATURE HEAT PUMP PRESENTATION // JULIAN PFAFFL

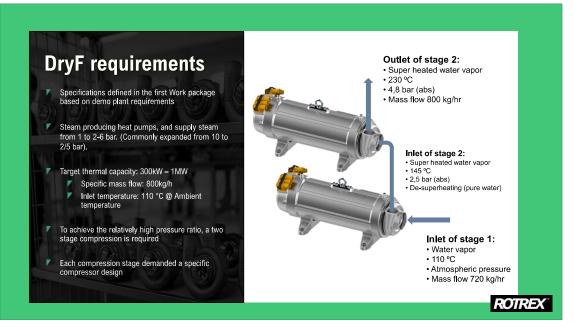
CSH2T NEW COMPRESSOR GENERATION FOR HT APPLICATIONS

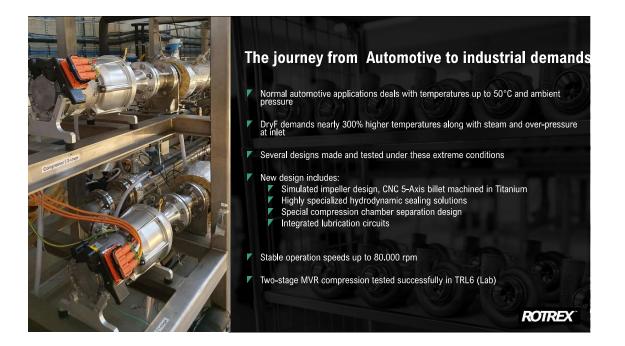
// Field tests started with EEAB member Geelen Counterflow

- Hybrid dryers (gas + HP) for petfood and aquafeed
- Locations in South Korea (1200kWth), China (2400kWth) and Norway (3350kWth)
- Operating point to/tc = 35°C/122°C

4 HIGH TEMPERATURE HEAT PUMP PRESENTATION // JULIAN PFAFFL

OUR STORY


Key points


- ROTREX is an automotive company founded in year 2000
- Company core technology is ultra high-speed planetary drives, with units mechanically exceeding shaft speed of 340.000 rpm
- Develops, produces and markets superchargers and air pumps for a wide range of industries based on patented traction technology for OEM, OES, and aftermarket companies worldwide

<section-header><list-item><list-item><list-item><list-item>

VAT Number: DK 25381238

ROTREX

HEATEN

Experience from VHE-200 kWth HTHP and participation in Dry-F contributed to the Heaten MW-family heat pumps

e should make wasting heat illegal

Geir Robstad, Partner, COO - HEATEN AS

SPRING 2021

HEATEN TODAY

Who?

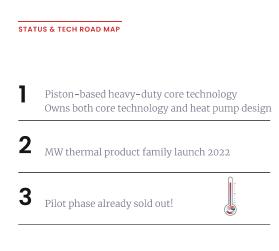
Heaten is continuing where Viking left off, then add a seasoned CEO and strong collaboration partners, and you have the Heaten team today!

Whom?

Heaten has experienced a vast pull in Europe and have already backing from well known, large international customers and industry.

How?

Heaten is currently scaling VHTHP technology platform up to MW HP family in collaboration with the world's largest engine development company, AVL.


Heaten has **8 years of R&D**, design and engineering experience in developing piston-based ORCs (heat-to-power) and heat pumps (power-to-heat).

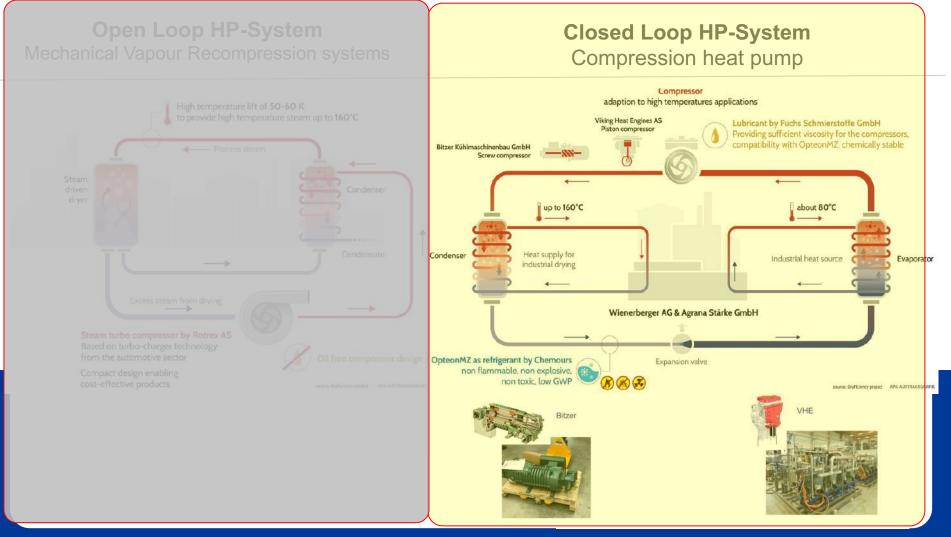
SOLUTION

Heaten has **successfully sold its smaller engines** to an industrial customer in a key market.

Heaten has a significant head start, and is confident to deliver on an R&D and IP **roadmap towards mid-temperature processes** of 150-400°C.

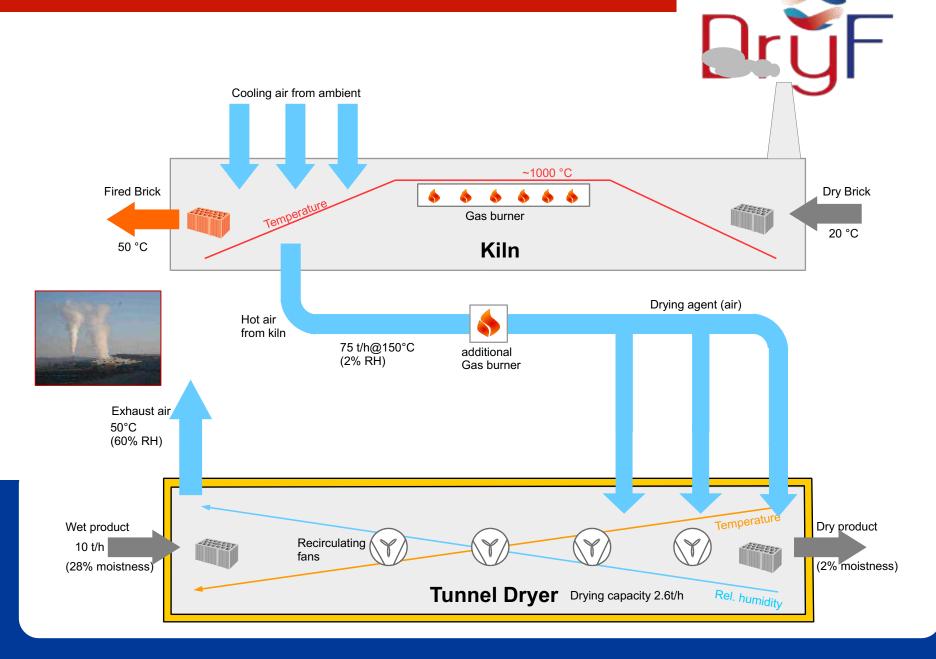
Heaten's **digitalisation strategy** will build a new culture of customercentric innovation in an agile organisation.

DRYficiency


Stefan Puskas 21.04.2021

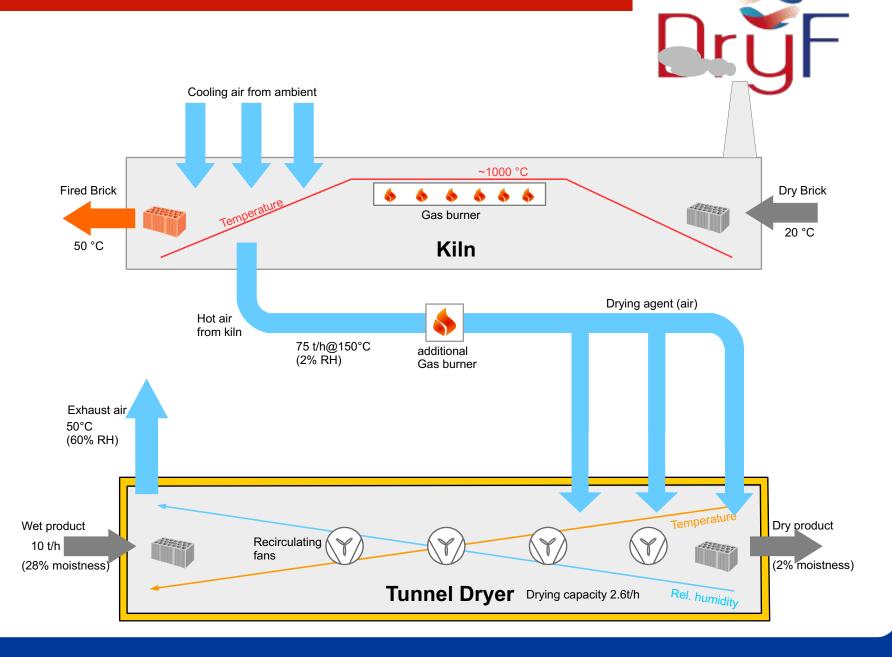
2- Approaches

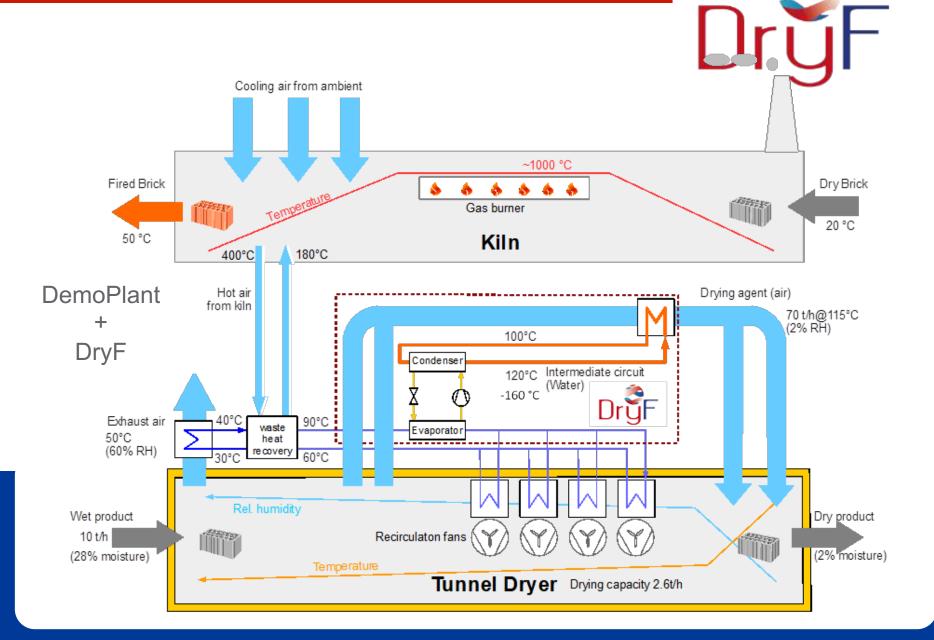
Estimates show that 12-25% of the national industrial energy consumption in developed countries is attributable to industrial drying.

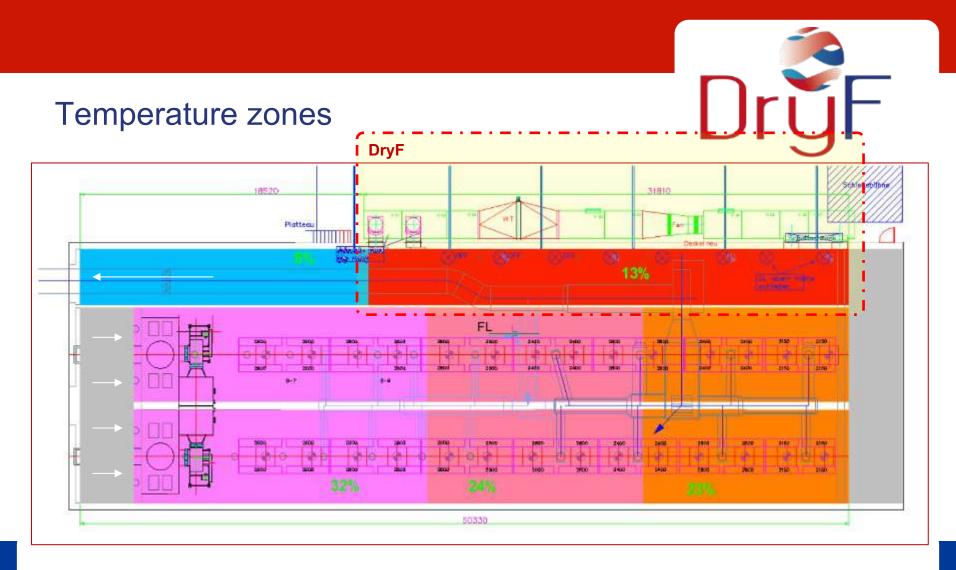


DemoPlant Uttendorf (Austria)

Conventional process






stefan.puskas@wienerberger.com

Conventional process

DryF heats the return track; the products spends approx. 13% of the overall drying time in that part of the dryer.

1st stage: Absorption Heat Pump

MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH

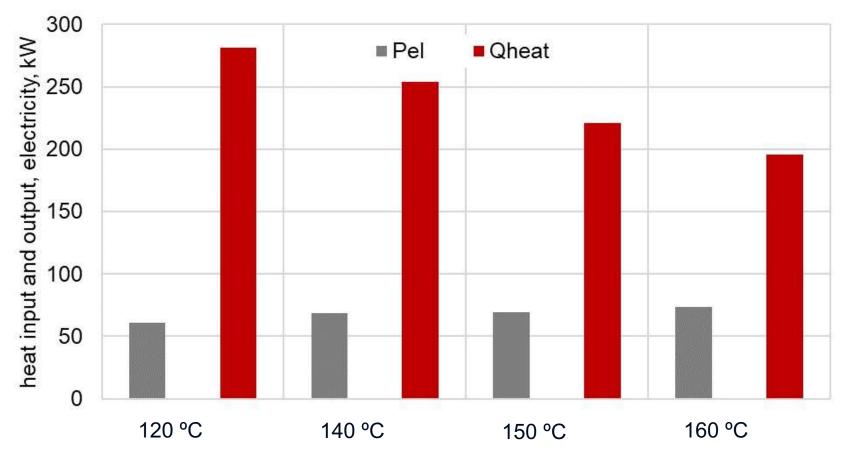
2nd stage: DryF Heat Pump

Compressor:8 piston compressorsRefrigerant:R-1336-mzz(Z) "OpteonMZ"Lubricant:Fuchs Schmierstoffe GmbH

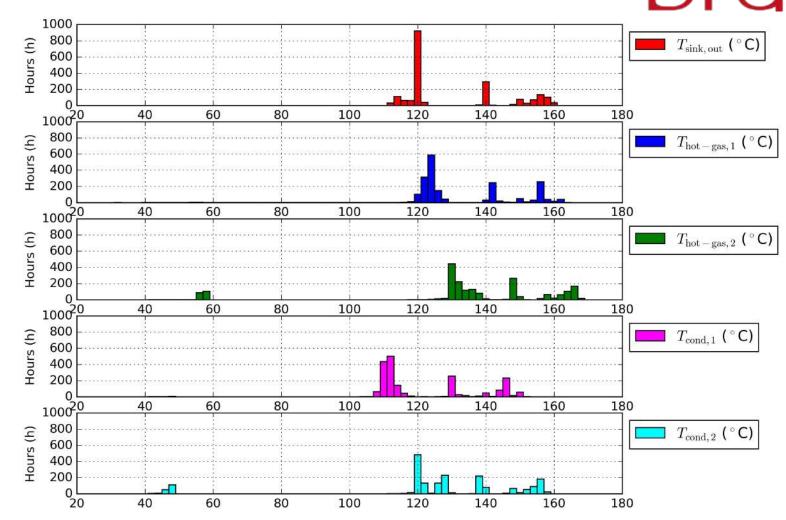
Goal of DryF is to demonstrate the functionality and reliability of high-temp. HPs!

HPs in a brick factory: HPs are the best available instruments to recover <u>latent</u> <u>heat</u> from the moist-air flows (e.g. out of the dryers).

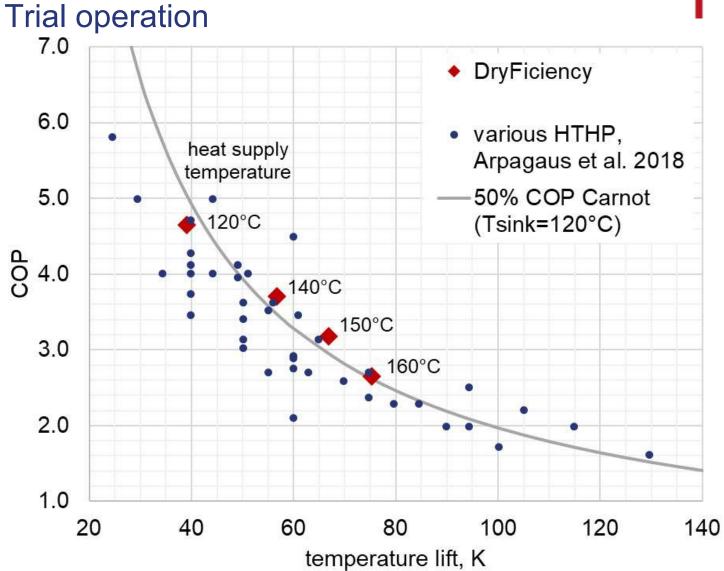
High temp HPs (like DryF): Make sense when an energy source "not very much colder" then the needed one is available (e.g. 1-stage = absorption HP)


Other benefits to be considered

- Water recovery due to condensation in the heat-recovery (~ 1.2 kgH2O/kWh)


- Reduction of air-mass flows through the dryer

Energy balance



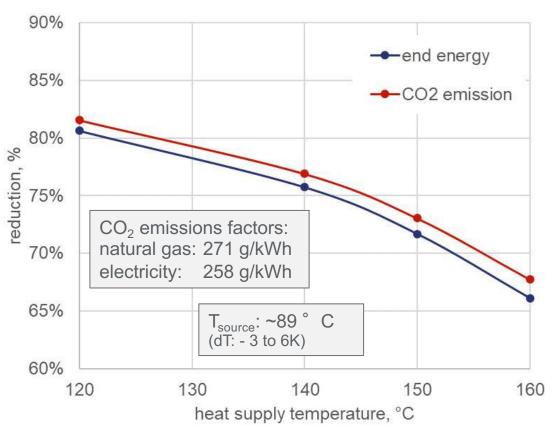
Status of operating hours: 2.034 h

Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., Bertsch, S., High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials, Energy (152), p.985-1010, 2018.

٦ry

CO2-emission factor natural gas

Austria:271 g/kWhEU:290 g/kWh


Primary energy factor for gas Austria: 1.18 kWh/kWh EU: 1.36 kWh/kWh

Primary energy factor for electricityAustria:1.91 kWh/kWhEU:2.10 kWh/kWh

Compare:

Gas-driven drying vs. HP-assisted drying (el)

U

Thank you for your attention!

stefan.puskas@wienerberger.com

Heat pump demonstrator at AGRANA wheat starch dryer in Pischelsdorf, Austria

High temperature heat pumps in energy intensive industries: demonstration plants 21st April 2021

AGRANA Stärke GmbH Thomas Laminger

Grant Agreement No 723576 - Energy Efficiency-

Innovation Action H2020-EE-2016-2017

AGRANA Biorefinery, Pischelsdorf

🚘 250.000 m³ bioethanol

- 80.000 t biogenic CO₂
- 260.000 t wheat starch
- S0.000 t wheat protein

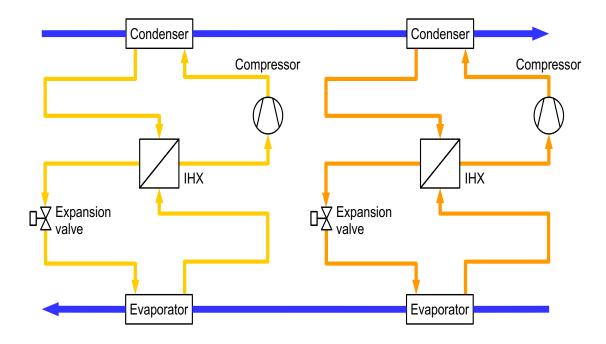
70.000 t ActiProt®

7 100.000 t ActiGrano®

😚 10.000 t bran

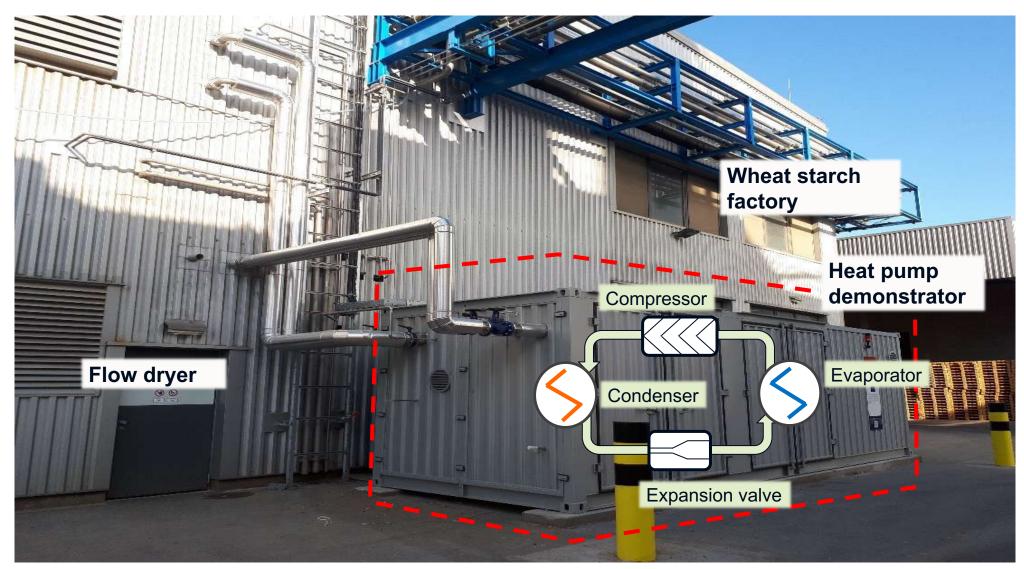
Heat pump demonstrator – Starch dryer WSA1

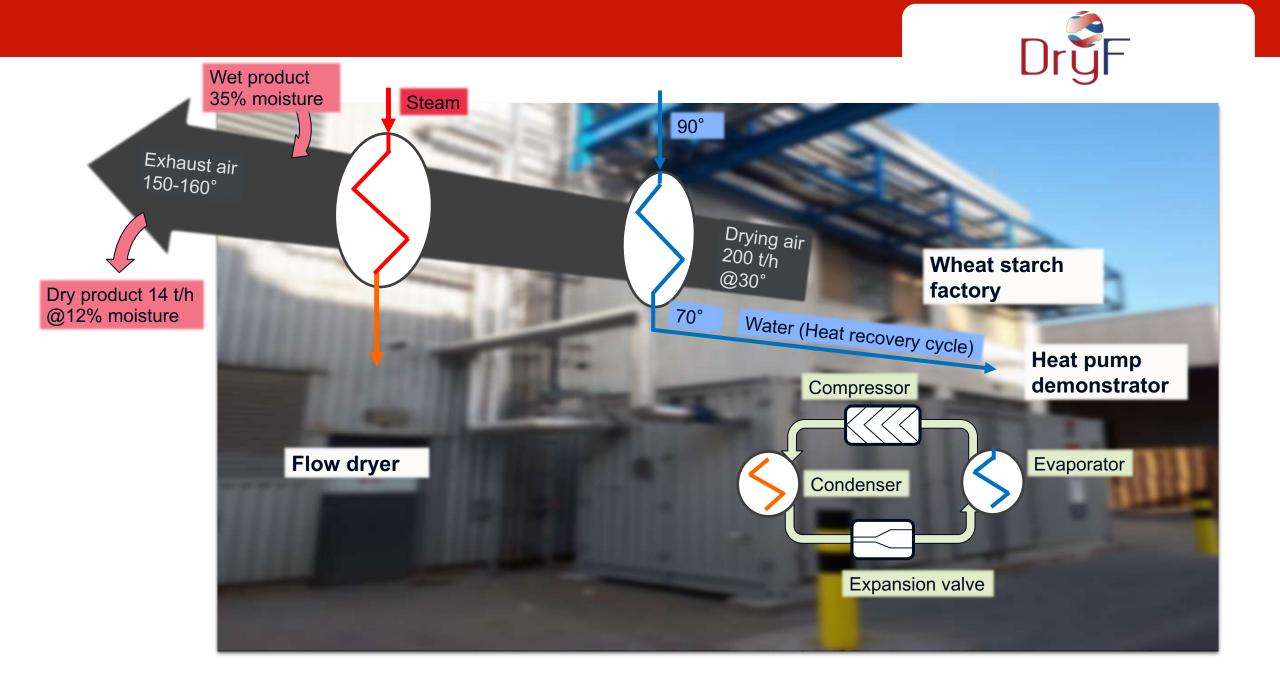
- Container outside the starch dryer WSA1
 - Start of installation September 2019
 - Start of commissioning May 2020
 - Trial test until August 2020
 - Ongoing performance optimization
- Design parameters
 - Heating capacity of appr. 400 kW (appr. 10% of the starch dryer's heat demand)
 - The heat supply temperatures are in the range of 110 - 160 °C.
 - COP up to 4
- Integration
 - Heat source: heat recovery circle (water)
 - Heat sink: drying air

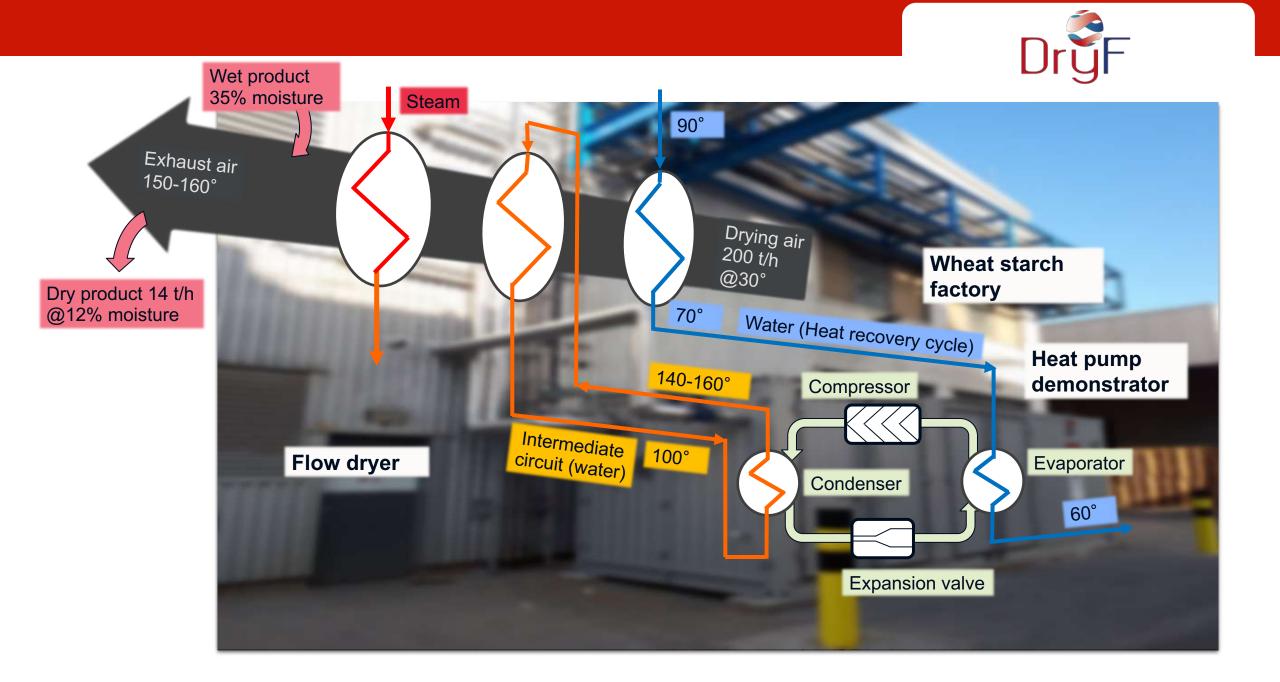


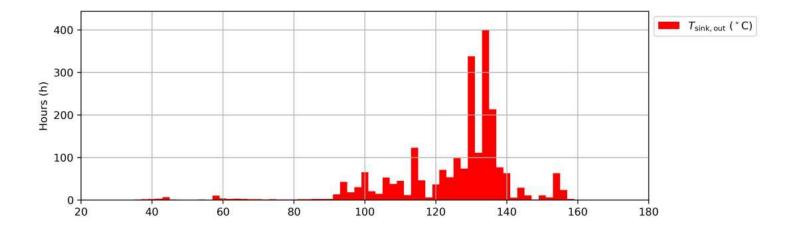
Closed loop heat pump cycle

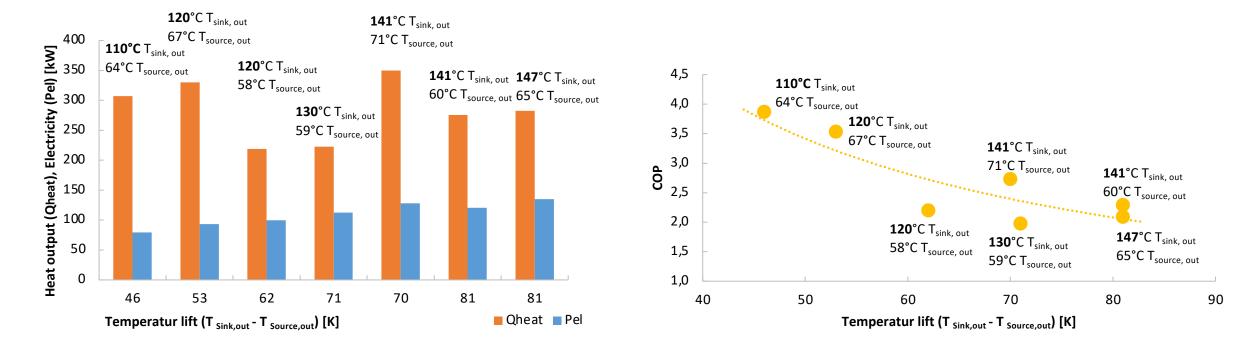
- Variable configuration (twin-cycle source parallel or serial)
- Refrigerant OpteonMZ[™] by Chemours
- 2 screw compressors (Bitzer)





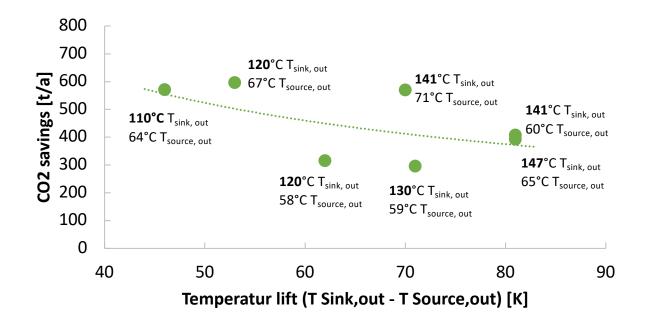






Performance

- ~2300h Operation hours
- max. heat output ~350kW
- COP between 2-4
- Varying source temperature



Performance

• Annual CO₂ savings up to 600 t

Operation hours: 8280 h/a CO₂-Factors: 271kg/MWh Natural gas; 258 kg/MWh Electricity (Austrian Mix) [Umweltbundesamt 2019]

Time schedule

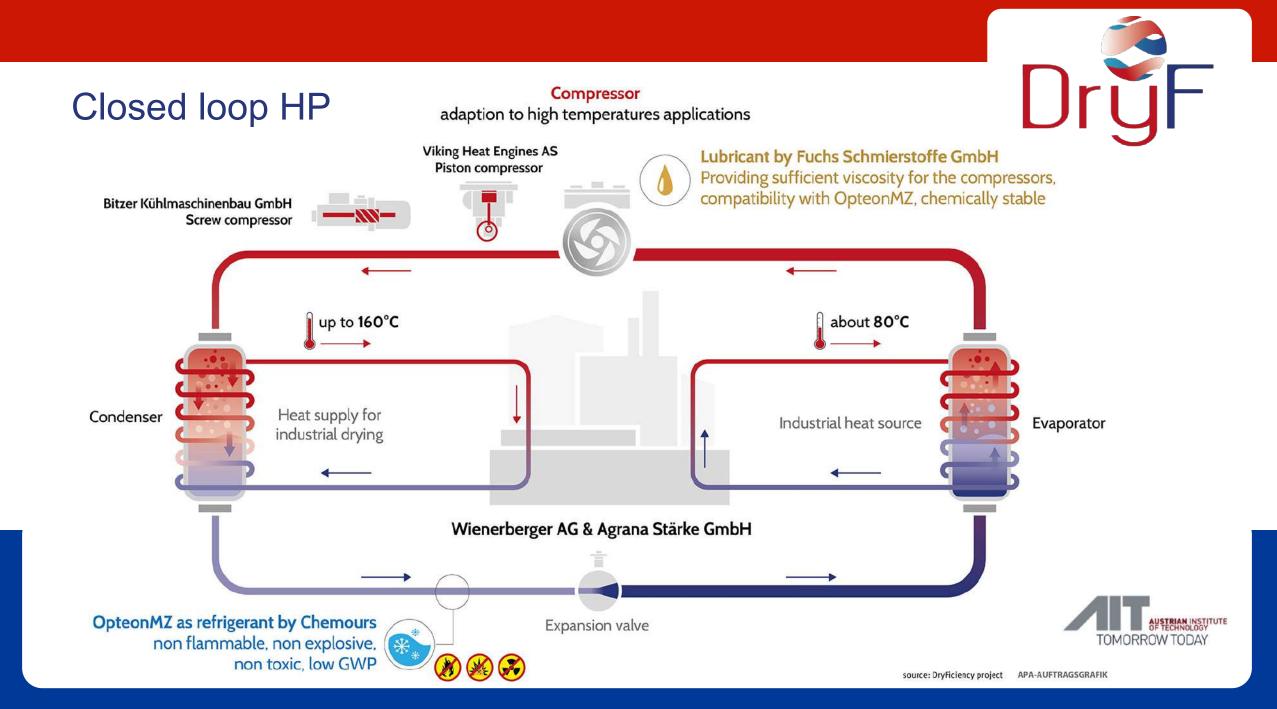
Ongoing optimization in cooperation with AIT, AMT and ENERTEC.

The demo phase until August 2021 will be split in thirds:

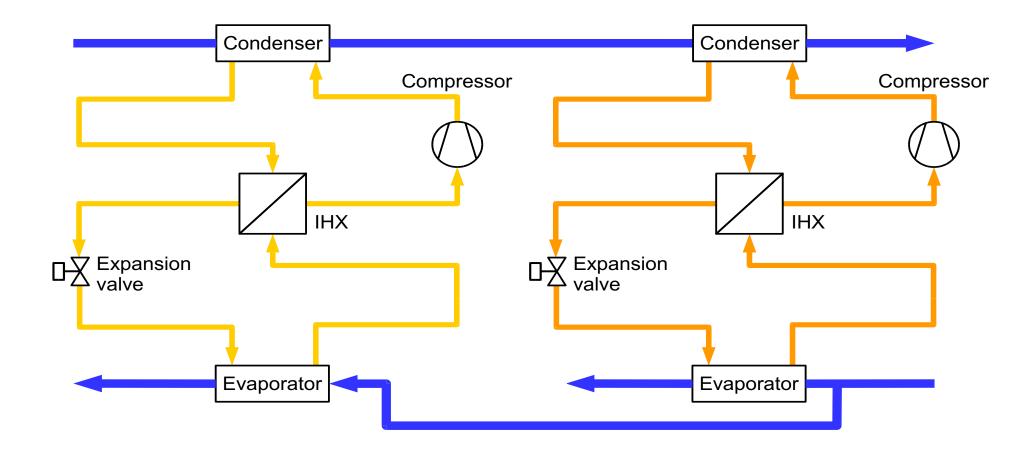
- providing the heat supply temperature of the design point with different operation conditions and
- providing the heat supply temperature close to the design point with different operation conditions.
- more challenging conditions at the operational limits of the heat pump

DryFiciency at a glance

- H2020 project with 13 partners and 6 Mio € funding
- started in September 2016
- development and demonstration of high temperature heat pumps


DryFiciency Consortium

Closed Loop Heat Pumps


Open Loop Heat Pump

TOMORROW TODAY		2 RTOs		
Bitzer	Viking Heat Engines	3 compressor manufacturers (2 SME)	ROTREX	
Chemours	LUBRICANTS. TECHNOLOGY. PEOPLE.	1 refrigerant manufacturer 1 lubricant manufacturer		
		1 plant engineer/ system expert (1 SME)	EPCON Evaporation Technology AS	
G R A W T STĂRKE	Wienerberger Building Material Solutions	3 end-users	SCANSHIP for cleaner oceans	
	2 experts	s on dissemination & exploitation (1	SME)	
		ehpa RTDS		

DryF

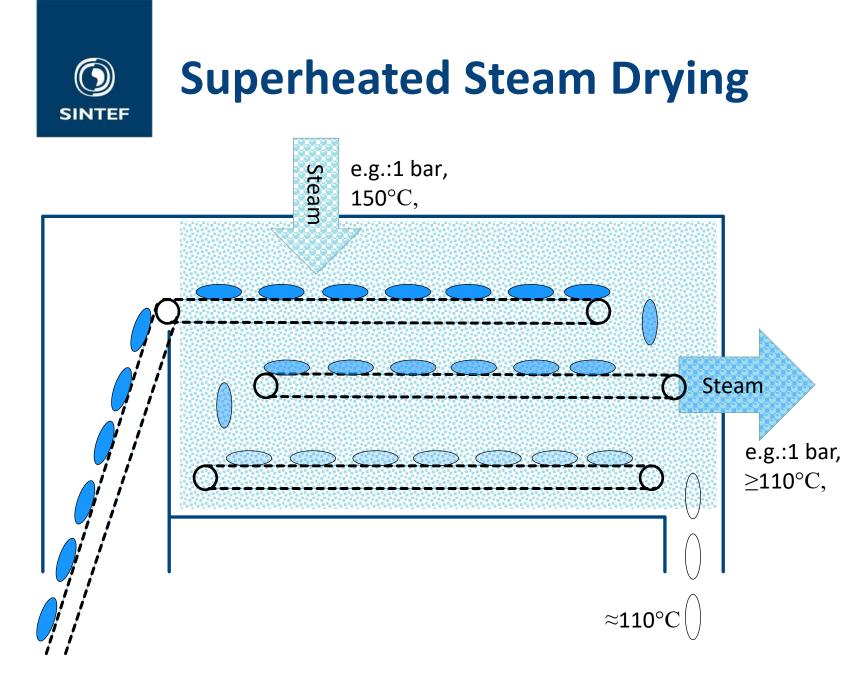
Twin cycle heat pump design

Open Loop Heat Pump

Party Real of Street

400V TH

Power supply | 2-stage

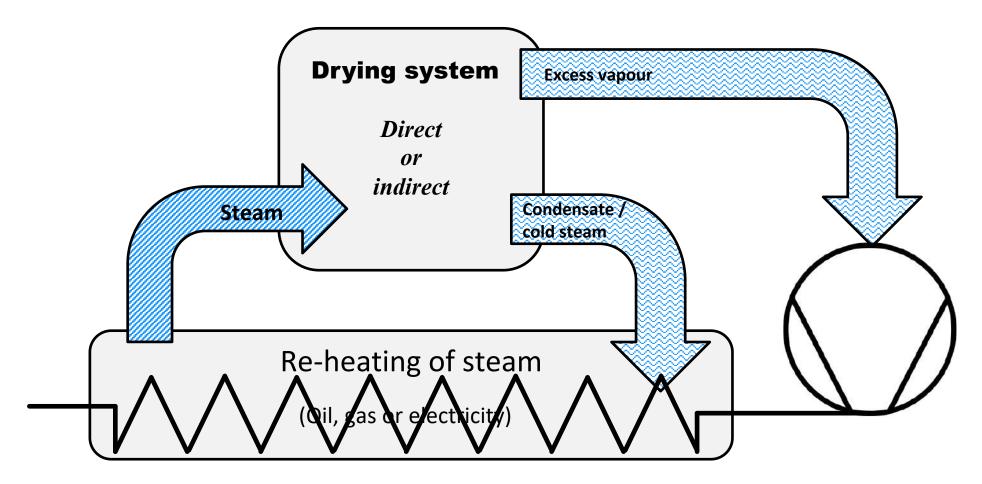

0 2 88

Michael Bantle SINTEF Energy Research

0 : 00

Prower supply | 1-st

Inverter 12


Specific Energy Consumption:

- Dryer 0.8 kWh/kg
 - Ideal 0.63 kWh/kg
- Excess steam available
- Aim 0.2 kWh/h

SINTEF Energi AS, Michael Bantle

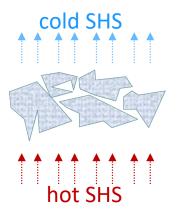
2

Open Loop Heat Pump (Mechanical Vapor Recompression) SINTEF

Technology for a better society

 \bigcirc

Why using Superheated Steam instead of Air as Drying medium?



	Overall heat transfer coefficient c and viscosity $\boldsymbol{\eta}$				
		T [°C]	STEAM	AIR	
$H=m \cdot c \cdot \Delta T$	C[kJ/(kg K)]	100	2.042	1.012	
$RE = \frac{W \cdot d_{P} \cdot \rho}{\rho(1 - \varepsilon)}$		150	1.980	1.018	
	<u>ဨ</u> [10-6 kg/ms]	100	12.27	21.94	
		150	14.18	24.07	

As higher **c** value as higher drying rate

As lower value as better pore diffusion

- Abundance and Safety:
 - Most abundant elements on earth; low cost and nearly unlimited available
 - From environmental point of view: water is ideal refrigerant above 0°C
 - Non-toxicity, non flammable, 0 Ozone Depletion Potential, 0 Global Warming Potential
- Regulatory Relief:
 - Not subject to present or future environmental or safety regulations
- Efficiency:

5

- High latent heat of evaporation (2270 kJ/kg); 4-5 times higher than hydrocarbons or CO2
- Critical temperature: 380-386°C
- General high COP

6

Multistage systems

	СОР	COP (+Intercool)	$\dot{Q}_{ThermCap} [kW]$	Q _{Intercool} [kW]	P _{compr} [kW]	p2 [bar]	<i>Τ</i> ₂ [°C]
One Compressor	12.79		247.3		19.3	2.03	187
Two Compressors	6.57		255.4		38.9	3.67	270
Two Compr. + Intercooling	6.12	6.46	240.6	12.8	39.3	4.13	213
Three Compressors	4.50		263.7		58.6	6.12	351
Three Compr. + Intercooling ↓ ② Ţ ③ Ţ ◎ ↓	4.00	4.38	237.3	22.6	59.3	7.84	255

Results of the Performance Analysis for Multi-Stage Compression for Compressor Speeds of n = 82 700 rpm, Inlet Pressure p = 1 bar, Inlet Temperature T = 105 °C and Mass Flow of m ≈ 0.1 kg sec-1, Pcompr is required compression power, p2 the discharge pressure and T2 the discharge temperature after the last compression stage

SINTEF Energi AS, Michael Bantle

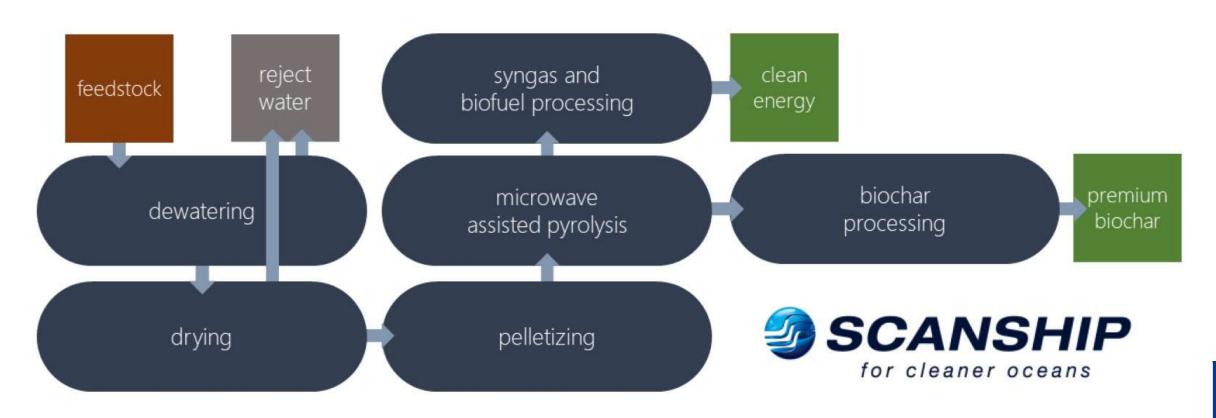
7

Cost for Compressor

MVR- Compressor	screw compressor		steam fans/blowers		Turbocompressor		
stages	1 stage		5 stage		2 stage		
Inlet	110°C/1bar		110°C/1bar		110°C/1bar		
Outlet	150°C/5bar		150°C/5bar		150°C/5bar		
Investment	1 200 000 €		700 000 €		50 000 €		
Capacity	1300 kW		1300 kW		1300 kW		
steam flow	2000 kg/h		2000 kg/h		2000 kg / h		
COP (W/W)	4.25		4.25		4.25		
net savings	8.48 GWh		8.48 GWh		8.48 GWh		
Location	Germany	Norway	Germany	Norway	Germany	Norway	
net savings**	52 275 €	482 885 €	52 275 €	482 885 €	52 275 €	482 885 €	
ROI	23 years	2.5 years	13.4 years	1.4 years	<mark>1 year</mark> 0.04€/kW/b	0.1 year	
** based on: electricity 0.15€/kWh Germany, 0.07€/kWh Norway; gas 0.04€/kWh Germany 0.06 €/kWh Norway							

Technology for a better society

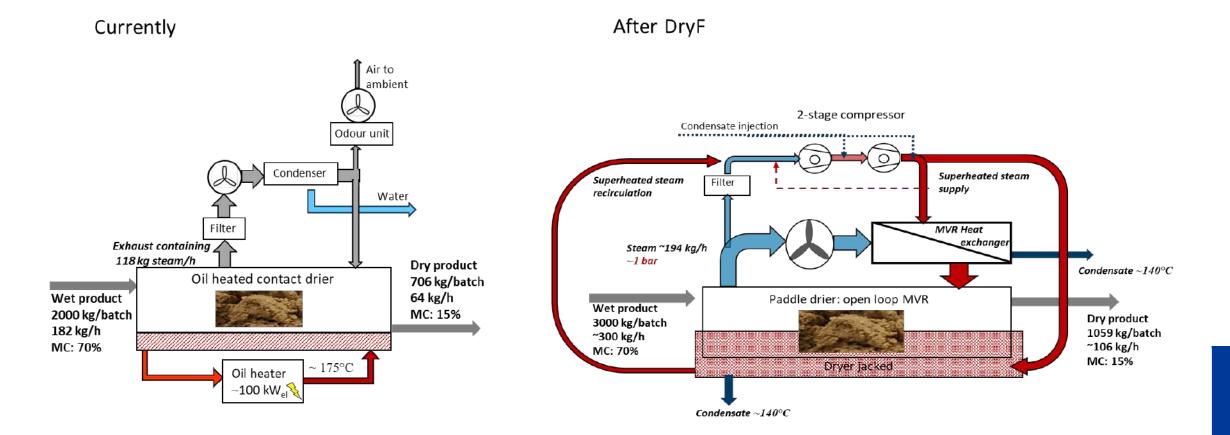
Lindum Demo Site



Pål Jahre Nilsen VP Innovation Scanship

Grant Agreement No 723576 - Energy Efficiency

DryF


Motivation - Lindum Demo Site

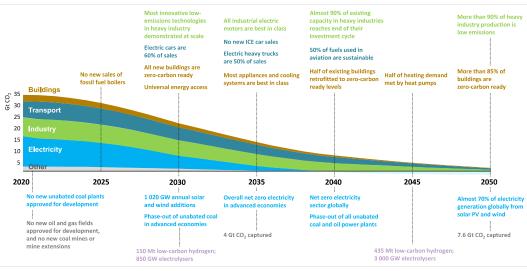
Boundary conditions Bio-Mass Drying – Modification towards energy efficient SHS drying

Final conference

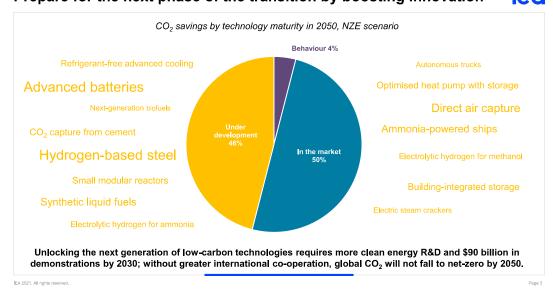
International Energy Agency

Page 1

led

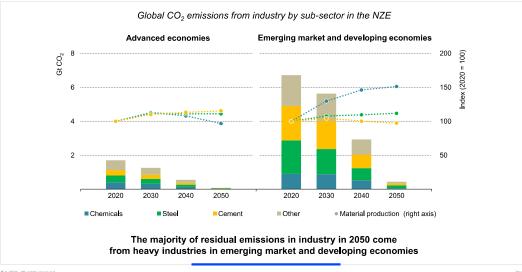


Net Zero by 2050: A Roadmap for the Global Energy Sector

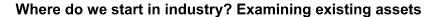

Dr Timur Gül, Head of the Energy Technology Policy Division Dr Peter Levi, Energy Technology Policy Division

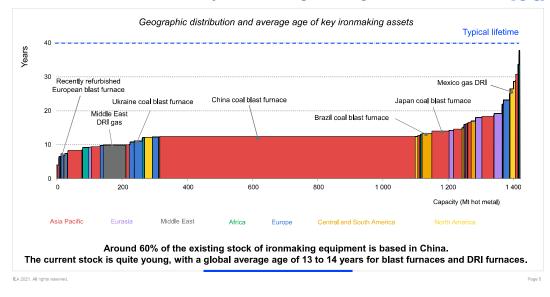
DryFiciency Conference, July 2021

Set near-term milestones to get on track for long-term targets

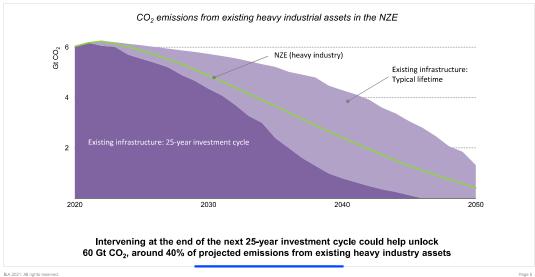


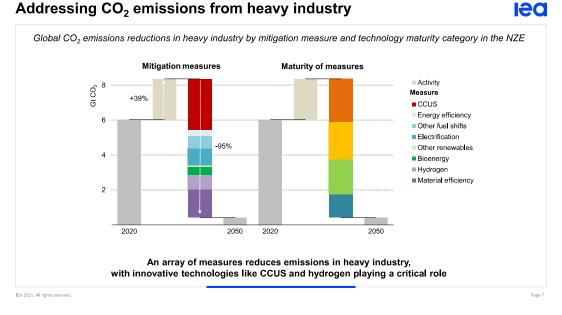
IEA 2021. All rights reserved.


Prepare for the next phase of the transition by boosting innovation led

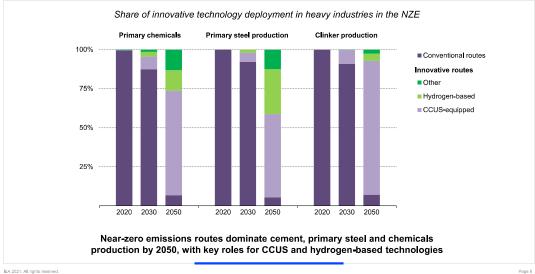

Dramatic reductions in industrial CO₂ emissions are required


IEA 2021. All rights reserved.

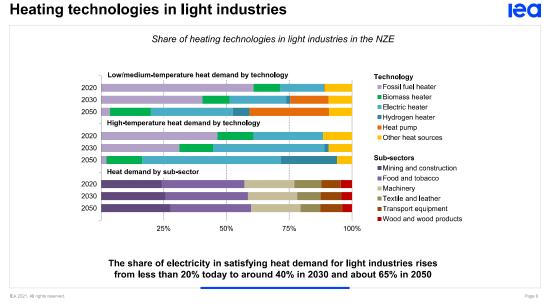

led



lea



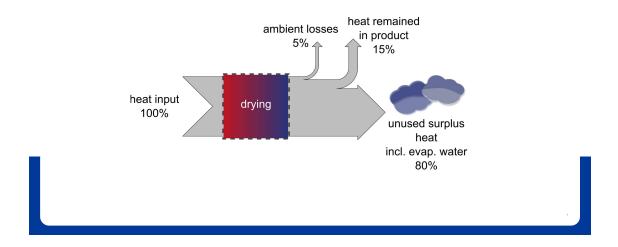
Addressing CO₂ emissions from heavy industry



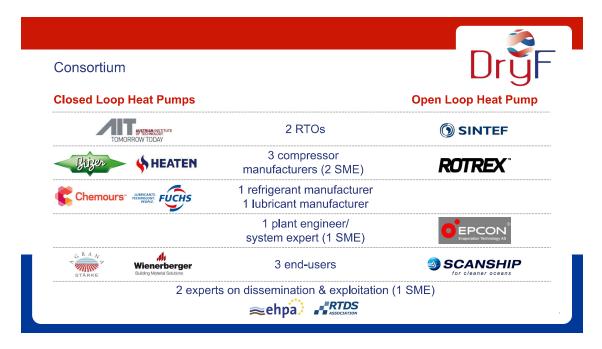
Innovative technology deployment in heavy industry

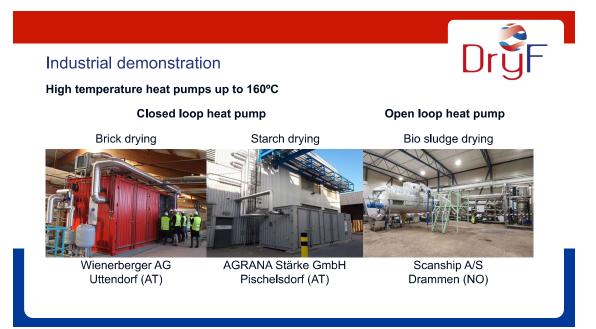
led

Heating technologies in light industries



lea




Drying: 10 – 25% of industrial energy consumption

DryF

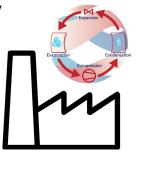
Closed loop heat pumps

Initial situation, expectations and results

V. Wilk, B. Windholz, F. Helminger, M. Lauermann, S. Kling, J. Riedl, A. Sporr, A. Schneeberger, T. Fleckl

AIT Austrian Institute of Technology

How it all started...


- 12 kW heat pump with R1336mzz(Z)
- Experimental investigation in AIT's lab
- Condensation temperatures up to 160°C

- Drying chamber with heat pump at WBG
- Process analysis for HP integration at AGA

Expectations

- develop a viable solution for industrial waste heat recovery
- increase heat supply temperatures up to 160°C
- solve the challenges for components
 - compressor
 - Iubricant
 - refrigerant
- demonstration in industry

DryF

- → max SGT up to +100 C (compressor inlet)
 → max DGT up to +140°C (compressor outlet)
- Operates with HFO HT Refrigerants

Piston compressor development

8 compressors at Wienerberger

- design based on an ORC expander
- operation as compressor due to change in the valve settings
- designed for R-1336mzz(Z)
- swept volume of 54 m³/h at 1800 rpm
- around 50 kWth output

new product family with 1-8 MWth

• 1 MWth to be launched in 2022

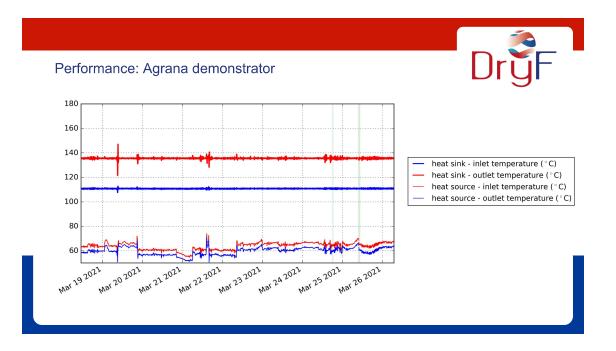
Lubricant and refrigerant development

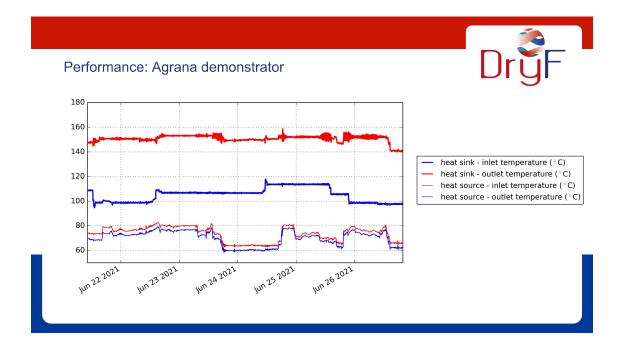
R-1336mzz(Z)

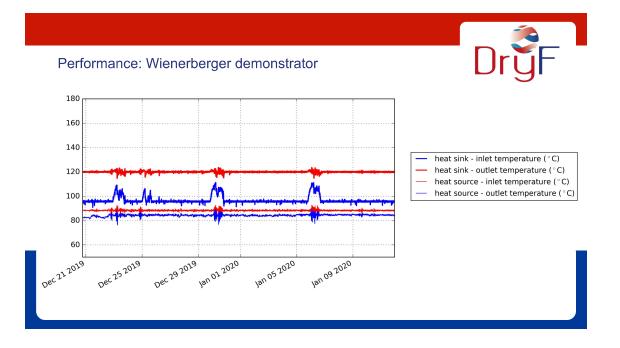
- A1 refrigerant (low toxicity, no flammability)
- GWP = 2, OPD = 0
- Critical temperature = 171°C

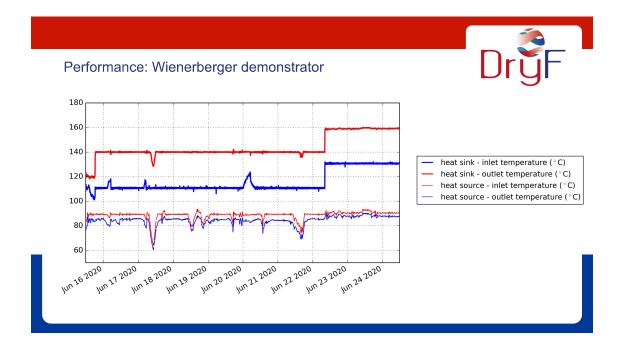
PAG lubricant

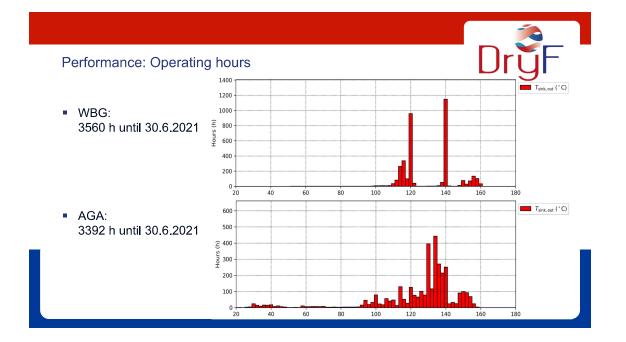
- Miscible with refrigerant
- Thermally and chemically stable with refrigerant
- High viscosity at high temperature and pressures










Operation of the demonstrators

Challenges encountered during the development of DryFiciency

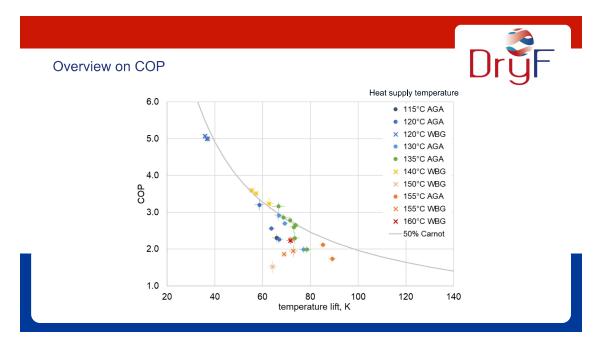
Global factors

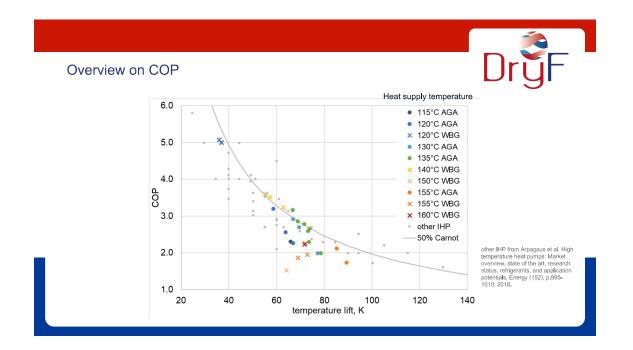
- Corona pandemic
- lead times for materials

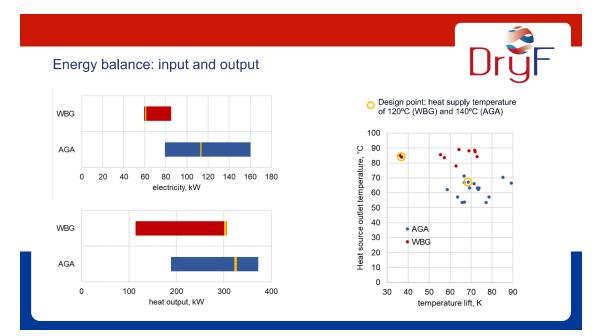
Material compatibility

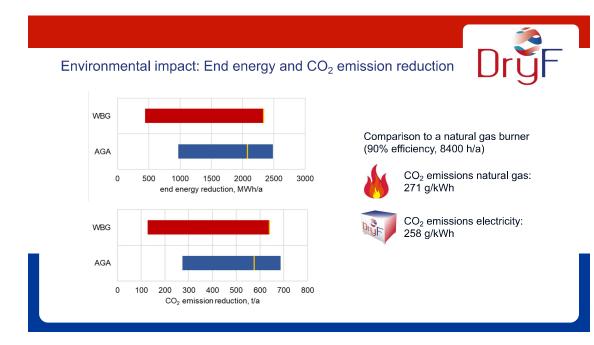
- sealing materials for safety valves
- sealing materials in components

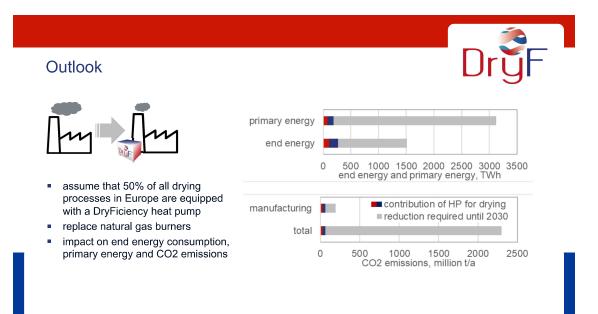
Mechanical design


vibrations of piston compressors


Integration infrastructure:

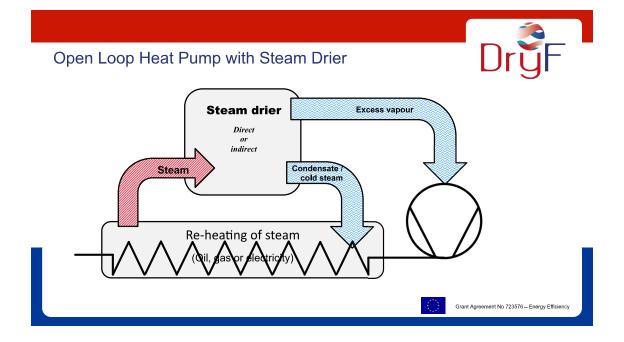

- pressure maintenance device
- water pump for the oil cooler
- flow measurement for the oil cooler
- pressurized air supply
- availability of the source and the sink


Process control


- start up procedure
- data transfer
- measurement devices

Summary

- Successful component development for high temperature applications
 - compressors, lubricant and refrigerant
- Successful demonstration of the closed loop heat pumps
 - stationary operation with satisfying performance
 - process control works well and balances variations in the heat source and sink
 - almost 7000 h operation hours achieved for both demonstrators until end of June
- Heat pumps are a future proof process heat supply technology
 - CO₂ emission reduction
 - waste heat recycling


Initial situation, Expectation and Results of open loop heat pump

Michael Bantle (PhD) Senior Researcher SINTEF Energy

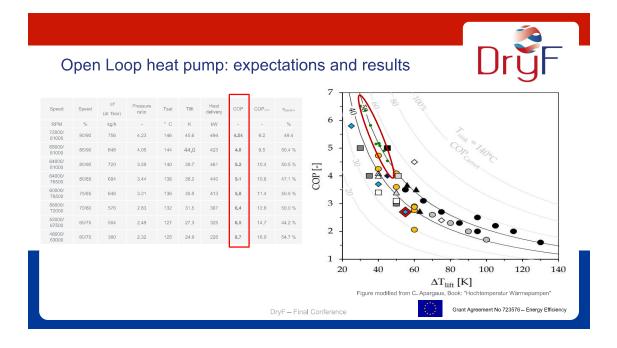
Jan Haraldsen Chairman EPCON Evaporation Technology

Trondheim/Norway

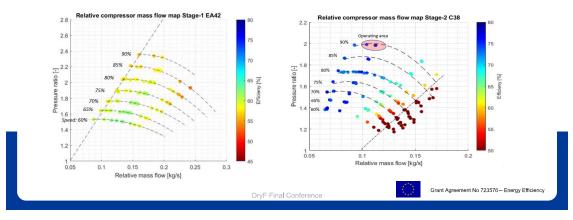
Refrigerant R718 (water)

- Abundance and Safety:
 - Most abundant elements on earth; low cost and nearly unlimited available
 - From environmental point of view: water is ideal refrigerant above 0°C
 - Non-toxicity, non flammable, 0 Ozone Depletion Potential, 0 Global Warming Potential
- Regulatory Relief:
 - Not subject to present or future environmental or safety regulations
- Efficiency:
 - High latent heat of evaporation (2270 kJ/kg); 4-5 times higher than hydrocarbons or CO2
 - Critical temperature: 380-386° C
 - General high COP
- Disadvantages
 - Requires high volume flow
 - High superheating during compression

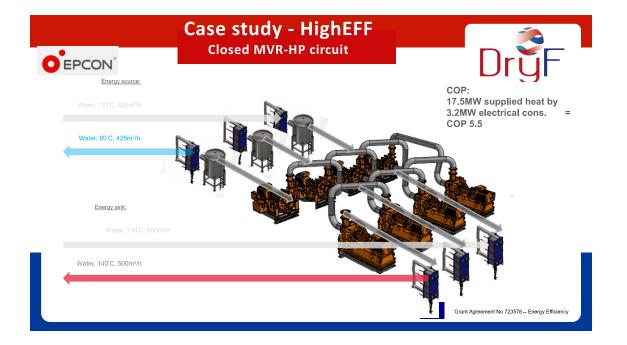
DryF Final Conference


Grant Agreement No 723576 - Energy Efficiency

657	247.3		19.3		
NO Compressors 6.57			17.0	2.03	187
	255.4		38.9	3.67	270
	.46 240.6	12.8	39.3	4.13	213
Three Compressors 4.50	263.7		58.6	6.12	351
hree Compr. + Intercooling 4.00 ● + <td>.38 237.3</td> <td>22.6</td> <td>59.3</td> <td>7.84</td> <td>255</td>	.38 237.3	22.6	59.3	7.84	255


Open loop demo: Scanship

- Impeller design is maximised (pressure ratios of 2.4 to 2.6)
- Updated design with "purge chamber" is under development


MVR machinery

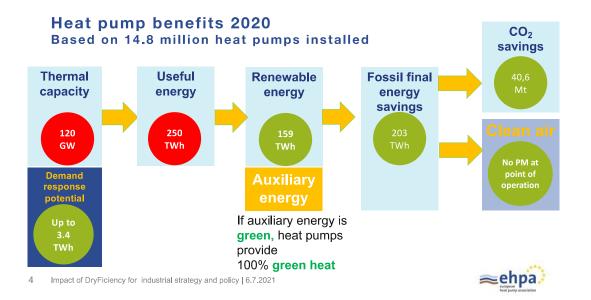
- High pressure centrifugal fan:
 Left: standard MVR fan
 Left: 3-stage MVR-fans
- Lett: 3-stage MVR-fans - Right: compact MVR fans
- Below:
 - Roots blower / positive displacement compressor

Summary

- Demonstration of 2 stage open loop heat pumps
 - □ Temperature lifts of 45 degrees
 - □ COP of >4
 - Capacities of 500 kW
- □ Further development of MVR-heat pumps for large capacities
 - □ Capacities >10 MW
 - □ COP of > 5
 - □ Temperature lifts of 60 degrees
- □ "Recycling" of waste heat (80-100%)
- □ Reduction of primary energy by 50-70 % is achievable
 - no greenhouse gas emissions (depending on origin of electricity)
- Development of steam producing heat pump solutions is ongoing

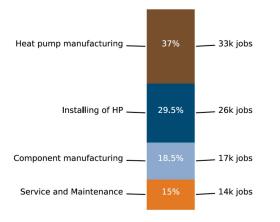
SINTEF Energi AS, Michael Bantle

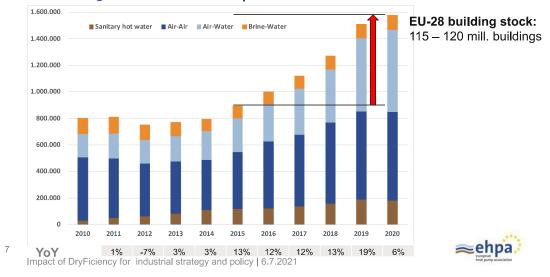
Grant Agreement No 723576 - Energy Efficiency


The European Heat Pump Association aisbl / founded 2000



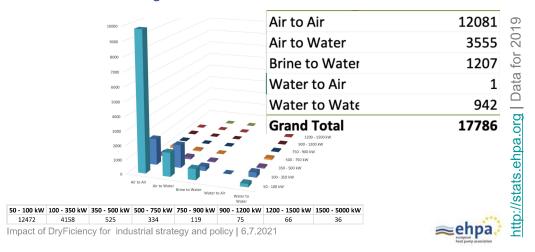
2 Impact of DryFiciency for industrial strategy and policy | 6.7.2021





Employment impact of heat pumps (89 784 FTE)

6 Impact of DryFiciency for industrial strategy and policy | 6.7.2021



Market growth '10 - '20 | HP stock²⁰²⁰: 14.8 mill. installed

Industrial HP? Numbers not integrated with the rest of statistics

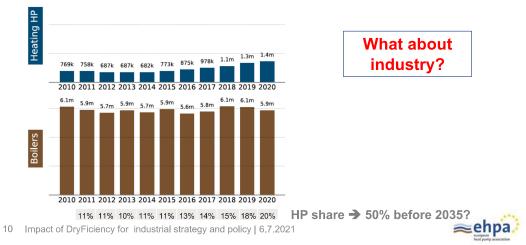
8

energy demand for heating residential buildings in Europe

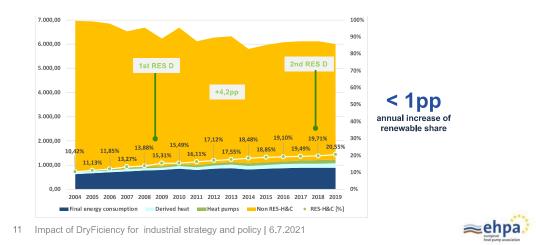
2 625 TWh₂₀₁₅

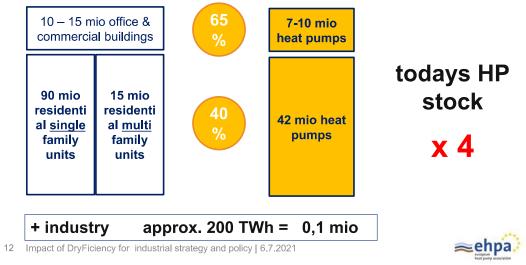
Source: https://www.mdpi.com/1996-1073/13/8/1894/htm

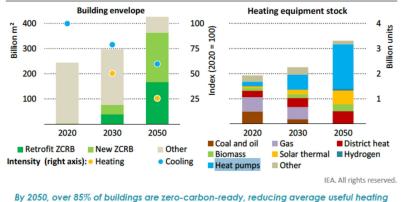
9 Impact of DryFiciency for industrial strategy and policy | 6.7.2021


energy demand for industry in Europe

2 950 TWh_{2015/2019} 1958 TWh for heat 724 TWh for HP (37%)


R. de Boer, A. Marina, B. Zühlsdorf, C. Arpagaus, M. Bantle, V. Wilk, B. Elmegaard, J. Corberán, J. Benson. Strengthening Industrial Heat Pump Innovation – Decarbonizing Industrial Heat, 2020

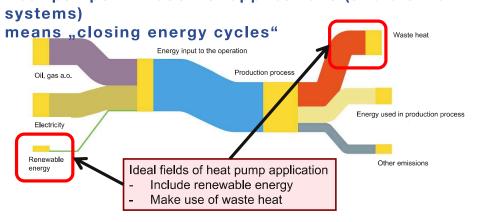

Market share development: HP in total heater sales


RES in heating and cooling (Eurostat Shares)

EU Energy systems integration strategy

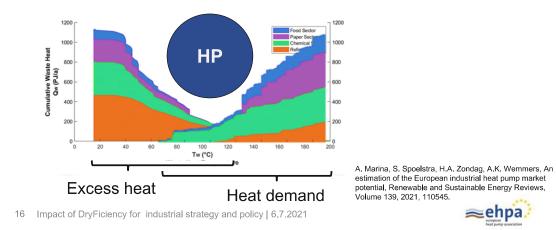
IEA report: net zero by 2050 (2021)

By 2050, over 85% of buildings are zero-carbon-ready, reducing average useful heating intensity by 75%, with heat pumps meeting over half of heating needs Impact of DryFiciency for industrial strategy and policy [6.7.2021 For industrial heat pumps: +500 MW per months until '50



Large Heat Pumps: An industry for an industry, in industry for an industrialised Europe

By closing energy cycles, using excess energy of one service as the resource of another and/or using renewable sources, heat pumps help position the industry at the heart of the EU energy transition and the decarbonisation of industrial processes



≈ehpa

Heat pumps in industrial applications (and district

15 Impact of DryFiciency for industrial strategy and policy | 6.7.2021

Barriers to wider use of large heat pumps

- Energy price ratio: gas/electricity ٠
- Process industry requests for short ROI
- Competition from existing heat sources ٠
- Possible feed-in temperature from HP too low ٠
- integration of HP in existing process diffcult/expensive < DryF</pre> ٠
- Doubts with regards to security and reliability ٠
- · Limited knowledge on the match between HP and process demands with key decision makers
- 17 Impact of DryFiciency for industrial strategy and policy | 6.7.2021

← DryF ← DryF

← DryF

- ← DryF
 - ← DryF

What do we need?

Industry is ready, but...

- Do we have enough planners?
- Do we have enough engineers?
- Is financing a problem?
- R&D

18

- Institutions
- **Scientists** .
- Programs/projects ٠ → DryF 2?

Policy has recognized, but ...

- **Electricity taxation** •
- **CO**₂ price signal •
- **Fossil fuel subsidies** •
- Industrial subsidies •